当前位置:首页 > 七年级数学讲学稿第七章三角形班级姓名 - 5
例2.如图⑶一个四边形ABCD模板,设计要求AD与BC的夹角应为30°,CD与BA的夹角应为20°.
现在已测得∠A=80°,∠B=70°,∠C=90°,请问:这块模板是否合格?并说明理由.
例3. ⊿ABC中,⑴如图⑷,∠DBC和∠ECB的角平分线相交于点O;⑵如图⑸,∠ABC的角平分线
BD和∠ACE的角平分线相交于点O;如图⑹,∠CBD的角平分线BO和∠BCE的角平分线CO相交于点0,试猜想∠A与∠D的关系,并选择其中一个进行证明.
三、巩固练习:
1.有四条线段,长度分别是12cm,10cm,8cm,4cm,选其中的三条组成三角形,则可组成 个不同的三角形.
2.如果等腰三角形的两边长为5cm和9cm,则三角形周长为 . 3.△ABC中,若∠A∶∠B∶∠C=3∶4∶7,则△ABC是 三角形.
4. 一个多边形中,锐角最多有 个;三角形中至少有一个角不小于 °; 一个四边形截去一个角后可以得到的多边形是 . 5.一个多边形的每个外角都是30°,则它是 边形,其内角和是 . 6.一个n边形的每个内角都相等,且比它的一个外角大60°,则边数n= .
7.三角形最长边等于10,另两条边的长分别为x和4,周长为C,则x和C的取值范围分别是 .
8.如图⑺,AB∥CE, ∠C=37°,∠A=114°,则∠F的度数为 . 9.如图⑻所示,△ABC中AB=AC,请你添加一个条件 .使得AD∥BC. ....10.如图⑼,D、E是边AC的三等分点若△ABC的面积为12㎝2,则△BDC的面积是 ㎝2. 11.如图⑽,∠1+∠2+∠3+∠4的度数是 .
11.一个多边形的内角和是1980°,则它的边数是 ,它的外角和是 ,
共有 条对角线.
12.一个正多边形,它的一个外角等于与它相邻的内角的1/5,则这个多边形是( )
A、五边形 B、八边形 C、地、九边形 D、十二边形 13.下列说法不正确的是( )
A、任意形状的一些三角形可镶嵌地面 B、用形状大小完全相同的六边形可镶嵌地面 C、用形状大小完全相同的任意四边形可镶嵌地面 D、用任意一种多边形可镶嵌地面 14.用两个正三角形与下面的若干个( )可以进行平面镶嵌.
A、正方形 B、正六边形 C、正八边形 D、正十二边形
15.如图⑾,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时, 则∠A、∠1、∠2之间的关系是( )
A、∠A=∠1-∠2 B、2∠A=∠1-∠2
C、3∠A=2∠1-∠2 D、3∠A=2(∠2-∠1)
16.如图⑿,已知∠1+∠2=180°,DG∥AC,求证:∠A=∠DFE.
17.如图⒀, △ABC中,点D在AC上,且∠ABC=∠C=∠BDC, ∠ABD=∠A,求∠A的度数.
18.如图⒁,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E, ∠A=35°,?∠D=42°,求∠ACD的度数.
19.如图⒂,已知△ABC中,∠ACB=90°,CD是AB边上的高,BE是AC边上的中线, AB=10cm,BC=8cm,AC=6cm. ⑴求CD的长;⑵求△ABE的面积.
20.如图⒂,已知∠xoy=90°,点A、B分别在射线ox,oy上移动,BE是∠ABy的平分线,BE的反向延长线与∠OAB的平分线相交于点C,试问∠C的大小是否随点A、B的移动而发生变化?如果保持不变,求出∠C的大小,如果随点A、B的移动而发生变化,请求出变化范围.
共分享92篇相关文档