µ±Ç°Î»ÖãºÊ×Ò³ > »ªÄÏÀí¹¤´óѧ 2018ƽʱ×÷Òµ£º¡¶¾¼ÃÊýѧ¡·ÎÊÌâÏê½â
ʵÓÃÎĵµ
½â£º
1
dx 2x
1
x c
7£®Çó²»¶¨»ý·Ö ½â£º
x ln(1 x)dx .
7
ʵÓÃÎĵµ
x ln(1
1
2
x)dx 2 x) 2
1
ln(1
x)dx
2
2
2 x ln(1
1
xx1
xdx
1
x2 ln(1
x)
1
x2
x
dx
221 x 12
2 x ln(1
x2 ln(1
1
1
x) 2 x x1
1
1
x 1
dx
x xdx
x)
221 x 12
2 x ln(1
2 x ln(1c 1
2
x) 2 x) 12 4 x 1
x 1
1
1
1
1
xdx
x | 2 x 2 ln |1
8£®Éè
1
b ln xdx 1£¬Çó b.
b
½â£º
1
ln xdx (x ln x x) |1
b b ln b b 1 1 b e
9£®Çó²»¶¨»ý·Ö
1
x dx .
1
1 e
½â£ºÉè e x t,Ôòx ln t, dx t dt
1
)dt1dxex 1 t(1
dt (1
1
1
t)t
t
t | c x ln(1
ln | t | ln |1
xe ) c
1
2
x
1£¬ A 10£®Éè f (x) 2x
1
10
£¬Çó¾ØÕó A µÄ¶àÏîʽ f ( A) .
1
½â£º A 1
A
1 2 2
1
1
ʵÓÃÎĵµ
0
0
1 2
1 1
1 0
2 3
f ( A) 2 A A E 2
2
0 1
0 1
0 2
2 0 1
1611£®É躯Êý f (x)
x 4
a ,
,4
x ÔÚ (
x
4
8
,
) Á¬Ðø,ÊÔÈ·¶¨ a µÄ
Öµ.
ʵÓÃÎĵµ
½â£º x 4 ʱ£¬ lim f (x) lim
x4
x 2
lim x 16 4 8
x4
x4
x 4
ÓÉÓÚ f (x) ÔÚ (ËùÒÔ a
,
) ÉÏÁ¬Ðø£¬ËùÒÔ lim f (x) x4
f (4) a
8
2
12£®ÇóÅ×ÎïÏß y
2x ÓëÖ±Ïß y x 4 ËùΧ³ÉµÄÆ½ÃæÍ¼ÐεÄÃæ»ý.
2),(8, 4)
½â£ºÅ×ÎïÏß y
2
2x ÓëÖ±Ïß y x 4 ÏཻÓÚÁ½µã£¬·Ö±ðΪ (2, 4 y4
ËùΧ³ÉµÄÆ½ÃæÍ¼ÐεÄÃæ»ýΪ£º
S 2 y2
1dxdy
2
4
( y
2
4 2
4 y
)dy
y2
1
2
( y2
y3
) |4
26 18
3
2
6 1
1
13£®Éè¾ØÕó A 1
0
1 , B 1
1 31
2 £¬Çó AB .
1 1
2 6 3
½â£º AB 1 1 1
1 1 3
0 1 1
8 11 21
1 1 2
2 3
6
1 1
0 1 0
1 1 1 0
AB =8*£¨-3£©-11*£¨-2+6£©+21*(0+3)=-24-44+63=-5
2 1
14£®Éè A
Çó AB Óë 1 0 , BA . , B
2
3
¹²·ÖÏí92ƪÏà¹ØÎĵµ