当前位置:首页 > 宁夏银川一中2009届高三年级第六次月考测试数学试卷理科2009.1
银川一中2009届高三第六次月考数学(理)试题参考答案
一、选择题 1.C 7.A
2.C 8.D
3.C 9.B
4.C
5.D
6.A
10.D 11.A 12.A
二、填空题
13.①值域为{x|y?2};②是奇函数;③在???,?1?上是增函数,在??1,0?上是减函数,在?0,1?上是减函数,在?1,??上是增函数(其他亦可);14. 16.①③④ 三、解答题
3?3 15. C3;C1;C2. 2?a1?a2?a3?7,?17.解:解:(1)由已知得:?(a?3)?(a?4) 解得a2?2.设数列{an}的公比为q,
13?3a2.??2由a2?2,可得a1?22,a3?2q.又S3?7,可知?2?2q?7, qq即2q2?5q?2?0, 解得q1?2,q2?1,?q?2. ?a1?1. . 由题意得q?12故数列{an}的通项为an?2n?1.???????????6分
(2)由于bn?lna3n?1,n?1 由(1)得a3n?1?23n ?bn?ln23n?3nln2 ,2,?,
?Tn?b1?b2???bn
=3ln2(1?2?3?4?...?n)?3n(n?1)ln2 ?????..12分 218.(1)∵AA1=a, AB=2a,BC=a, E为C1D1的中点。 ∴DE?CE?2a,
DE⊥CE??(2分)
又∵DB?5a,EB?3a∴DE⊥EB ,而CE?EB?B ∴DE⊥平面BCE?(6分)
第 5 页 共 8 页
(2) 取DC的中点F,则EF⊥平面BCD,作FH⊥BD于H,连EH,则∠EHF就是二面角E-BD-C的一个平面角。????????(8分) 由题意得 EF=a,在Rt△DFH 中,HF?5a????(10分) 5∴tan∠EHF=5.?????????????????(12分)
?????????????19.解:由已知AB?(k,1),AC?(2,4),AB?10得?3?k?3, BC?(2?k,3)
(1)若k?Z,????3,?2,?1,0,1,2,3?,n?7。若A是直角,则k=-2;若B是直角,则 k(2-k)+3=0, k=-1,k=3;若C是直角,则2(2-k)+12=0,k=8.故m=3,△ABC是直角三角形的概
率为P?m3? n7(2)若k?R,?3?k?3且k≠
1.区间长度L=6.若B是钝角,则-k(2-k)-3<0, -1 率为P?求△ABC是直角三角形的概率. 20.解:(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以(0,?3),,(03)为焦点, 长半轴为2的椭圆.它的短半轴b?222?(3)2?1, y2?1. 故曲线C的方程为x?··············································································· 4分 4(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足 ?2y2?1,?x?22消去y并整理得(k?4)x?2kx?3?0, 4??y?kx?1.?故x1?x2??????????OA?OB,即x1x2?y1y2?0.而y1y2?k2x1x2?k(x1?x2)?1, 33k22k2?4k2?1???1?2于是x1x2?y1y2??2. k?4k2?4k2?4k?42k3,xx??. ············································································· 6分 1222k?4k?4第 6 页 共 8 页 ????????1所以k??时,x1x2?y1y2?0,故OA?OB. ····························································· 8分 21412当k??时,x1?x2??,x1x2??. 21717?????AB?(x2?x1)2?(y2?y1)2?(1?k2)(x2?x1)2, 424?343?13?而(x2?x1)?(x2?x1)?4x1x2?2?4?, 217171722?????465所以AB?. 12分 1721.解:(1)?f??1??0,?a?b?c?0, b?a?c ???b2?4ac?(a?c)2?4ac?(a?c)2当a?c时??0, 函数f?x?有一个零点;当a?c时,??0,函数f?x?有两个零点。??.3分 (2)假设a,b,c存在,由①知抛物线的对称轴为x=-1,∴?由②知对?x?R,都有0?f(x)?x?b??1,即 b?2a, 2a1(x?1)2 2令x?1得0?f(1)?1?0?f(1)?1?0?f(1)?1?a?b?c?1又因为f(x)?x?0?a?0恒成立,?? 2(b?1)?4ac?0??(a?c)2?4ac?0,即(a?c)2?0,即a?c ?a?b?c?111?由?b?2a得a?c?,b?, 42?a?c?111111,b?时,f(x)?x2?x??(x?1)2,其顶点为(-1,0)满足条件4242441122①,又f(x)?x?(x?1)?对?x?R,都有0?f(x)?x?(x?1),满足条件②。 42当a?c?∴存在a,b,c?R,使f(x)同时满足条件①、②。?..8分 (3)令g?x??f?x??1?f?x1??f?x2???,则 2?f?x1??f?x2?1 g?x1??f?x1???fx?fx??????12?2?2第 7 页 共 8 页 f?x2??f?x1?1, g?x2??f?x2???fx?fx??????12??2221?g?x1??g?x2????fx?fx?????12??0,??f?x1??f?x2???g?x??0在?x1,x2??41f?x1??f?x2??内必有一个实根。即?x0??x1,x2?,使f?x0????成立。?.12分 2?22.解:(1)如图,连接BD、OD.∵CB、CD是⊙O的两条切线,∴BD⊥OC,∴∠2+∠3=90° 又AB为⊙O直径,∴AD⊥PB,∠1+∠2=90°,∴∠1=∠3,∴AD∥OC (2)AO=OD,则∠1=∠A=∠3,∴Rt△BAD∽Rt△ODC,AD?OC=AB?OD=2 13) 221?3x?2(x?)?17?2,x?时fmin?; (2) ?1?x?1 24.(1) f(x)??22??x?4(x?1)??223.(1)1; (2) P(, 第 8 页 共 8 页
共分享92篇相关文档