云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2019年黑龙江省哈尔滨六中高考数学二模试卷及答案(理科).Word

2019年黑龙江省哈尔滨六中高考数学二模试卷及答案(理科).Word

  • 62 次阅读
  • 3 次下载
  • 2025/12/5 18:23:49

令t=,则()=

2

==≤=

, 当且仅当t=此时=

2

,即t=2,t=

2

即=时,取等号,

,a=

则双曲线C1的渐近线方程为y=±故双曲线C1的一条渐近线方程为y=故选:B.

=x,

x,

12.【分析】判断f(x)的单调性得出f(x)=k(x+2)在[,+∞)上有两解,作出函数图象,利用导数的意义求出k的范围. 【解答】解:f′(x)=2x﹣lnx+1,f″(x)=2﹣, ∴当x≥时,f″(x)≥0, ∴f′(x)在[,+∞)上单调递增, ∴f′(x)≥f′()=2﹣ln>0, ∴f(x)在[,+∞)上单调递增, ∵[a,b]?[,+∞), ∴f(x)在[a,b]上单调递增,

∵f(x)在[a,b]上的值域为[k(a+2),k(b+2)], ∴

∴方程f(x)=k(x+2)在[,+∞)上有两解a,b.

作出y=f(x)与直线y=k(x+2)的函数图象,则两图象有两交点.

第13页(共23页)

若直线y=k(x+2)过点(,+ln2), 则k=

若直线y=k(x+2)与y=f(x)的图象相切,设切点为(x0,y0), 则,解得k=1.

∴1<k≤故选:C.

二、填空题(每题5分,满分20分,将答案填在答题纸上)

13.【分析】利用二项式定理求得含x项的系数,再根据含x项的系数为2019,求得a的值. 【解答】解:已知(1+x)(1﹣ax)=2019,则实数a=﹣1, 故答案为:﹣1.

14.【分析】约束条件表示的可行域,求出3个交点的坐标,求出斜率的范围,然后求解目标函数的范围即可.

2018

的展开式中含x项的系数为 (﹣?a)+

【解答】解:作出实数x,y满足不等式组的可行域如图中的阴影部分,

四个顶点的坐标分别为A(1,1)、B(3,0)、C(2,2), 而z=

表示可行域中的点(x,y)与点D连线的斜率,

的最小值为:

=,最大值为:

第14页(共23页)

目标函数则=2,

z∈[,2]. 故答案为:[,2].

15.【分析】由题意可知,侧视图是直角边长为【解答】解:如图,

的等腰直角三角形,则其面积可求.

∵原正方形的边长为2,∴对角线长为则侧视图是直角边长为其面积为S=故答案为:1.

16.【分析】设∠ABC=α,∠ACB=β,由余弦定理求得AC,由正弦定理求得sinβ,再利用余弦定理求得BD,利用三角函数的性质求出BD的最大值. 【解答】解:设∠ABC=α,∠ACB=β, 由余弦定理可得AC=1+(∴AC=

2

2

2

的等腰直角三角形,

)﹣2

2

cosα=4﹣2cosα,

=CD;

, ××sinβ

×cos(90°+β)

由正弦定理可得:sinβ=∴BD=3+(4﹣2=7﹣2

cosα+2

2

cosα)﹣2××

第15页(共23页)

=7﹣2=7﹣2=7+2∴α=

cosα+2cosα+2sin(α﹣

×sinα ),

×

时,BD取得最大值为

+1.

+1.

故答案为:

三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.【分析】(1)由等比数列的通项公式和求和公式,解方程可得公比,即可得到所求; (2)求得cn=

=﹣

,由数列的裂项相消求和,化简可得所求和.

【解答】解:(1)数列{an}与{bn}满足:且{an}为正项等比数列,a1=2,b3=b2+4,

可得a1=2b1=2,即b1=1,b3﹣b2=a3=4,即a3=8, 可得公比q=2,即an=2; 则2bn=(2)证明:cn=

,即bn=2﹣1;

=﹣

nn

即有Tn=1﹣+﹣+…+﹣由

>0,可得Tn<1.

=1﹣,

18.【分析】(1)连接AC,证明AE⊥BC,AE⊥AD,推出PA⊥AE,即可证明AE⊥平面PAD,然后说明平面AEF⊥平面PAD.

(2)以A为坐标原点建立如图所示空间直角坐标系,不妨设AB=AP=2,则

求出相关点的坐标,求出平面AEF的一个法向量,设直线EM与平面AEF所成角为θ,由

,利用空间向量的数量积求解λ,然后推出结果.

【解答】(1)证明:连接AC,因为底面ABCD为菱形,∠ABC=60°,所以△ABC是正三角形,

∵E是BC的中点,∴AE⊥BC,…………………………………(1分)

第16页(共23页)

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

, 令t=,则()=2==≤=, 当且仅当t=此时=2,即t=2,t=, 2即=时,取等号, ,a=则双曲线C1的渐近线方程为y=±故双曲线C1的一条渐近线方程为y=故选:B. =x, x, 12.【分析】判断f(x)的单调性得出f(x)=k(x+2)在[,+∞)上有两解,作出函数图象,利用导数的意义求出k的范围. 【解答】解:f′(x)=2x﹣lnx+1,f″(x)=2﹣, ∴当x≥时,f″(x)≥0, ∴f′(x)在[,+∞)上单调递增, ∴f′(x)≥f′()=2﹣ln>0, ∴f(x)在[,+∞)上单调递增, ∵[a,b]?[,+∞), ∴f(x)在[a,b]上单调递

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com