云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 运筹学清华第四版答案

运筹学清华第四版答案

  • 62 次阅读
  • 3 次下载
  • 2025/6/8 3:25:26

运筹学清华第四版答案

【篇一:清华_第三版_运筹学教程_课后答案~(_第一章

_第五章部分)】

文字]

运筹学教程

1. 某饲养场饲养动物出售,设每头动物每天至少需700g蛋白质、30g矿物质、100mg

维生素。现有五种饲料可供选用,各种饲料每kg营养成分含量及单价如表1所示。 表1

要求确定既满足动物生长的营养需要,又使费用最省的选用饲料的方案。

解:设总费用为z。i=1,2,3,4,5代表5种饲料。xi表示满足动物生长的营养需要时,第i种饲料所需的数量。则有: minz?0.2x1?0.7x

2?0.4x3?0.3x4?0.8x5?3x1?2x2?x3?6x4?8x5?700? ?x1?0.5x2?0.2x3?2x4?0.5x5?30s.t.?

?0.5x1?x2?0.2x3?2x4?0.8x5?100?x?0,i?1,2,3,4,5?i

2. 某医院护士值班班次、每班工作时间及各班所需护士数如表2所示。每班护士值班

开始时间向病房报道,试决定:

(1) 若护士上班后连续工作8h,该医院最少需要多少名护士,以满足轮班需要; (2) 若除22:00上班的护士连续工作8h外(取消第6班),其他班次护士由医院

排定上1~4班的其中两个班,则该医院又需要多少名护士满足轮班需要。 表2 6

2:00~6:00 30

解:(1)设x第i班开始上班的人数,i=1,2,3,4,5,6 minz?x1?x2?x3?x4?x5?x6?x1 ??x1?x2?s.t.?x3 ?x?4?x5??xi

?x6?60?x2?70?x3?60?x4?50?x5?20?x6?30 ?0,i?1,2,3,4,5,6且为整数

解:(2)在题设情况下,可知第五班一定要30个人才能满足轮班需要。则设设xi第i班开始上班的人数,i=1,2,3,4。 minz?x1?x2?x3?x4?30

?y11x1?y21x2?y31x3?y41x4?60,第一班约束 ?

?y11?1,y11?y12?y13?y14?2

?yx?yx?yx?yx?70,第二班约束121222323424? ?y22?1,y21?y22?y23?y24?2?

s.t.?y13x1?y23x2?y33x3?y43x4?60,第三班约束?y?1,y?y?y?y?2 31323334 ?33

?y14x1?y24x2?y34x3?y44x4?50,第四班约束? ?y44?1,y41?y42?y43?y44?2 ?x?0,y是0—1变量,i,j?1,2,3,4 ij?i

3. 要在长度为l的一根圆钢上截取不同长度的零件毛坯,毛坯长度有n种,分别为aj

(j=1,2,…n)。问每种毛坯应当截取多少根,才能使圆钢残料最少,试建立本问题的数学模型。

解:设xi表示各种毛坯的数量,i=1,2,…n。 n

maxz? ?a i?1 i xi ?n

??aixi?1?i?1 ?x是整数?i

4. 一艘货轮分前、中、后三个舱位,它们的与最大允许载重量如表3.1所示。现有三 种

货物待运,已知有相关数据列于表3.2。 表3.1 表3.2

又为了航海安全,前、中、后舱实际载重量大体保持各舱最大允许载重量的比例关系。具体要求:前、后舱分别与中舱之间载重量比

例的偏差不超过15%,前、后舱之间不超过10%。问该货轮应该载a,b,c各多少件运费收入才最大?试建立这个问题的线性规划模型。 解:设xij表示第i件商品在舱j的装载量,i,j=1,2,3

maxz?1000(x11?x12?x13)?700(x21?x22?x23)?600(x31?x32?x33)

1) 商品的数量约束: ?x11?x12?x13?600 ?

?x21?x22?x23?1000 ?x?x?x?800 3233?31

2) 商品的容积约束:

?10x11?5x21?7x31?4000?

?10x12?5x22?7x32?5400 ?10x?5x?7x?1500 132333?

3) 最大载重量约束:

?8x11?6x21?5x31?2000?

?8x12?6x22?5x32?3000 ?8x?6x?5x?1500 2333?13

4) 重量比例偏差的约束: ?

?8x11??8x?11??8x 13???8x

13???8x13???8x13?

?6x21?5x31??6x21?5x31??6x23?5x33??6x23?5x33??6x23?5x33??6x23?5x33? 232312123434

(1?0.15)(8x12?6x22?5x32)(1?0.15)(8x12?6x22?5x32)(1?0.15)(8x12?6x22?5x32)

(1?0.15)(8x12?6x22?5x32)(1?0.1)(8x11?6x21?5x31)(1?0.1)(8x11?6x21?5x31)

5. 篮球队需要选择5名队员组成出场阵容参加比赛。8名队员的身高及擅长位置见表 5. 表5

出场阵容应满足以下条件: (1) 只能有一名中锋上场; (2) 至少一名后卫;

(3) 如1号和4号均上场,则6号不出场; (4) 2号和8号至少有一个不出场。

问应当选择哪5名队员上场,才能使出场队员平均身高最高,试建立数学模型。 解:设xi?1表示第i个队员出场,i=1,2…8. maxz? 1 8 i

x?5 i?1 ?8

??xi?5 ?i?1 ?

?x1?x2?1,x6?x7?x8?1?x?x?1,x?x?x?2 8146

?2??xi是0—1变量

6. 时代服装公司生产一款新的时装,据预测今后6个月的需求量如表4所示,每件时

装用工2h和10元原材料费,售价40元。该公司1月初有4名工人,每人每月可工作200h,月薪2000元。该公司可于任一个月初新雇工人,但每雇1人需一次性额外支出1500元,也可辞退工人,但每辞退1人需补偿1000元。如当月生产数超过需求,可留到后面月份销售,但需付库存费每件每月5元,当供不应求时,短缺数不需补上。试帮组该公司决策,如何使用6个月的总利润最大。 表4单位:件

解:设xi1为第i月现有工人人数,xi2为新雇工人人数,xi3为辞退工人人数,yi为每月的需求。i=1,2,…,6。则有: 6

maxz?

?(40?10)? i?1 2002 66j

(xi1?xi2)? ?(2000 i?1

xi1?3500xi2?1000xi3)?5??(n

搜索更多关于: 运筹学清华第四版答案 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

运筹学清华第四版答案 【篇一:清华_第三版_运筹学教程_课后答案~(_第一章_第五章部分)】 文字] 运筹学教程 1. 某饲养场饲养动物出售,设每头动物每天至少需700g蛋白质、30g矿物质、100mg 维生素。现有五种饲料可供选用,各种饲料每kg营养成分含量及单价如表1所示。 表1 要求确定既满足动物生长的营养需要,又使费用最省的选用饲料的方案。 解:设总费用为z。i=1,2,3,4,5代表5种饲料。xi表示满足动物生长的营养需要时,第i种饲料所需的数量。则有: minz?0.2x1?0.7x 2?0.4x3?0.3x4?0.8x5?3x1?2x2?x3?6x4?8x5?700? ?x1?0.5x2?0.2x3?2

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com