当前位置:首页 > 大肠杆菌高效表达重组蛋白策略
289-298.
[23]. Baneyx F. Recombinant protein expression in Escherichia coli[J]. Current opinion in biotechnology, 1999, 10(5): 411-421.
[24].Friehs K. Plasmid copy number and plasmid stability[M]//New trends and developments in biochemical engineering. Springer Berlin Heidelberg, 2004: 47-82.
[25]. Jana S, Deb J K. RETRACTED ARTICLE: Strategies for efficient production of heterologous proteins in Escherichia coli[J]. Applied microbiology and biotechnology, 2005, 67(3): 289-298.
[26]. Rozkov A, Enfors S O. Analysis and control of proteolysis of recombinant proteins in Escherichia coli[M]//Physiological Stress Responses in Bioprocesses. Springer Berlin Heidelberg, 2004: 163-195.
[27]. Valdez-Cruz N A, Caspeta L, Pérez N O, et al. Production of recombinant proteins in E. coli by the heat inducible expression system based on the phage lambda pL and/or pR promoters[J]. Microb Cell Fact, 2010, 9(1): 18.
[28]. Graumann K, Premstaller A. Manufacturing of recombinant therapeutic proteins in microbial systems[J]. Biotechnology journal, 2006, 1(2): 164-186.
[29]. Andrews B, Adari H, Hannig G, et al. A tightly regulated high level expression vector that utilizes a thermosensitive lac repressor: production of the human T cell receptor Vβ5. 3 in Escherichia coli[J]. Gene, 1996, 182(1): 101-109.
[30]. Shin C S, Hong M S, Bae C S, et al. Enhanced production of human mini‐proinsulin in fed‐batch cultures at high cell density of Escherichia coli BL21 (DE3)[pET‐3aT2M2][J]. Biotechnology progress, 1997, 13(3): 249-257.
[31].Menart V, Jev?evar S, Vilar M, et al. Constitutive versus thermoinducible expression of heterologous proteins in Escherichia coli based on strong PR, PL promoters from phage lambda[J]. Biotechnology and bioengineering, 2003, 83(2): 181-190.
[32].Reilly D E, Yansura D G. Production of monoclonal antibodies in E. coli[M]//Current Trends in Monoclonal Antibody Development and Manufacturing. Springer New York, 2010: 295-308. [33]. Thomas M D, Van Tilburg A. Overexpression of foreign proteins using the Vibrio fischeri lux control system[J]. Methods in enzymology, 2000, 305: 315-329.
[34]. Young C L, Britton Z T, Robinson A S. Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications[J]. Biotechnology journal, 2012, 7(5): 620-634.
[35]. Nallamsetty S, Waugh D S. A generic protocol for the expression and purification of recombinant proteins in Escherichia coli using a combinatorial His6-maltose binding protein fusion tag[J]. Nature protocols, 2007, 2(2): 383-391.
[36]. Peti W, Page R. Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost[J]. Protein expression and purification, 2007, 51(1): 1-10.
[37]. Arnau J, Lauritzen C, Petersen G E, et al. Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins[J]. Protein expression and purification, 2006, 48(1): 1-13.
[38] .Porath J. Immobilized metal ion affinity chromatography[J]. Protein expression and purification, 1992, 3(4): 263-281.
[39]. di Guana C, Lib P, Riggsa P D, et al. Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein[J]. Gene, 1988, 67(1):
21-30.
[40].Vincentelli R, Bignon C, Gruez A, et al. Medium-scale structural genomics: strategies for protein expression and crystallization[J]. Accounts of chemical research, 2003, 36(3): 165-172. [41].Baens M, Noels H, Broeckx V, et al. The dark side of EGFP: defective polyubiquitination[J]. PloS one, 2006, 1(1): e54.
[42].Brothers S P, Janovick J A, Conn P M. Unexpected effects of epitope and chimeric tags on gonadotropin-releasing hormone receptors: implications for understanding the molecular etiology of hypogonadotropichypogonadism[J]. The Journal of Clinical Endocrinology & Metabolism, 2003, 88(12): 6107-6112.
[43].Salis H M, Mirsky E A, Voigt C A. Automated design of synthetic ribosome binding sites to control protein expression[J]. Nature biotechnology, 2009, 27(10): 946-950.
[44]. Simmons L C, Yansura D G. Translational level is a critical factor for the secretion of heterologous proteins in Escherichia coli[J]. Nature biotechnology, 1996, 14(5): 629-634.
[45].Wilson B S, Kautzer C R, Antelman D E. Increased protein expression through improved ribosome-binding sites obtained by library mutagenesis[J]. BioTechniques, 1994, 17(5): 944-953. [46]. Vimberg V, Tats A, Remm M, et al. Translation initiation region sequence preferences in Escherichia coli[J]. BMC molecular biology, 2007, 8(1): 100.
[47]. Swartz J R. Advances in Escherichia coli production of therapeutic proteins[J]. Current Opinion in Biotechnology, 2001, 12(2): 195-201.
[48]. Zhang W, Xiao W, Wei H, et al. mRNA secondary structure at start AUG codon is a key limiting factor for human protein expression in Escherichia coli[J]. Biochemical and biophysical research communications, 2006, 349(1): 69-78.
[49].Simmons L C, Reilly D, Klimowski L, et al. Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylatedantibodies[J]. Journal of immunological methods, 2002, 263(1): 133-147.
[50].Carrier T A, Keasling J D. Controlling messenger RNA stability in bacteria: strategies for engineering gene expression[J]. Biotechnology progress, 1997, 13(6): 699-708. [51]. Balbás P. Understanding the art of producing protein and nonprotein molecules in Escherichia coli[J]. Molecular biotechnology, 2001, 19(3): 251-267.
[52].Makrides S C. Strategies for achieving high-level expression of genes in Escherichia coli[J]. Microbiological reviews, 1996, 60(3): 512-538.
[53]. Lopez P J, Marchand I, Joyce S A, et al. The C‐terminal half of RNase E, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo[J]. Molecular microbiology, 1999, 33(1): 188-199.
[54]. Gustafsson C, Govindarajan S, Minshull J. Codon bias and heterologous protein expression[J]. Trends in biotechnology, 2004, 22(7): 346-353.
[55]. Gvritishvili A G, Leung K W, Tombran-Tink J. Codon preference optimization increases heterologous PEDF expression[J]. PLoS One, 2010, 5(11): e15056.
[56]. Puigbo P, Guzman E, Romeu A, et al. OPTIMIZER: a web server for optimizing the codon usage of DNA sequences[J]. Nucleic acids research, 2007, 35(suppl 2): W126-W131.
[57]. Tiwari A, Sankhyan A, Khanna N, et al. Enhanced periplasmic expression of high affinity humanized scFv against Hepatitis B surface antigen by codon optimization[J]. Protein expression and purification, 2010, 74(2): 272-279.
[58]. Tegel H, Tourle S, Ottosson J, et al. Increased levels of recombinant human proteins with the
Escherichia coli strain Rosetta (DE3)[J]. Protein expression and purification, 2010, 69(2): 159-167.
[59].Huang C J, Chen R H, Vannelli T, et al. Expression and purification of the cancer antigen SSX2: a potential cancer vaccine[J]. Protein expression and purification, 2007, 56(2): 212-219. [60]. Ivanov A V, Korovina A N, Tunitskaya V L, et al. Development of the system ensuring a high-level expression of hepatitis C virus nonstructural NS5B and NS5A proteins[J]. Protein expression and purification, 2006, 48(1): 14-23.
[61]. Galloway C A, Sowden M P, Smith H C. Increasing the yield of soluble recombinant protein expressed in E. coli by induction during late log phase[J]. Biotechniques, 2003, 34(3): 524-6, 528, 530.
[62]. Ou J, Wang L, Ding X, et al. Stationary phase protein overproduction is a fundamental capability of Escherichia coli[J]. Biochemical and biophysical research communications, 2004, 314(1): 174-180.
[63].Mosrati R, Nancib N, Boudrant J. Variation and modeling of the probability of plasmid loss as a function of growth rate of plasmid‐bearing cells of Escherichia coli during continuous cultures[J]. Biotechnology and bioengineering, 1993, 41(4): 395-404.
[64]. Kiefhaber T, Rudolph R, Kohler H H, et al. Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation[J]. Nature Biotechnology, 1991, 9(9): 825-829.
[65].Schein C H, Noteborn M H M. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature[J]. Nature Biotechnology, 1988, 6(3): 291-294.
[66]. Ramirez O T, Zamora R, Espinosa G, et al. Kinetic study of penicillin acylase production by recombinant E. coli in batch cultures[J]. Process Biochemistry, 1994, 29(3): 197-206.
[67]. Kolaj O, Spada S, Robin S, et al. Use of folding modulators to improve heterologous protein production in Escherichia coli[J]. Microbial cell factories, 2009, 8(1): 9.
[68].Maeng B H, Nam D H, Kim Y H. Coexpression of molecular chaperones to enhance functional expression of anti-BNP scFv in the cytoplasm of Escherichia coli for the detection of B-type natriuretic peptide[J]. World Journal of Microbiology and Biotechnology, 2011, 27(6): 1391-1398.
[69]. Bessette P H, ?slund F, Beckwith J, et al. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm[J]. Proceedings of the National Academy of Sciences, 1999, 96(24): 13703-13708.
共分享92篇相关文档