当前位置:首页 > 物理学答案(第五版,上册)马文蔚
12EOP??EPQ?EQO?ωB?PQ?
2由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.后者是垂直切割的情况.
8 -13 如图(a)所示,金属杆AB 以匀速v?2.0m?s?1平行于一长直导线移动,此导线通有电流I =40A.求杆中的感应电动势,杆的哪一端电势较高?
分析 本题可用两种方法求解.(1) 用公式E???v?B??dl求解,建立图(a)所示的
l坐标系,所取导体元dl?dx,该处的磁感强度B?μ0I.(2) 用法拉第电磁感应定律求2πx解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB在一个静止的形导轨上滑动,如图(b)所示.设时刻t,杆AB 距导轨下端CD的距离为y,先用公式Φ?B?dS求得穿
S?过该回路的磁通量,再代入公式E??势.
dΦ,即可求得回路的电动势,亦即本题杆中的电动dt解1 根据分析,杆中的感应电动势为
EAB???v?B??dl?dxl???0.1mAB1.1mμ0μIvvdx??0ln11??3.84?10?5V式中负号表示2πx2π电动势方向由B 指向A,故点A 电势较高.
解2 设顺时针方向为回路ABCD 的正向,根据分析,在距直导线x 处,取宽为dx、长为y 的面元dS,则穿过面元的磁通量为
dΦ?B?dS?穿过回路的磁通量为
μ0Iydx 2πxΦ??dΦ??Sμ0IμIyydx??0ln11
0.1m2πx2π1.1m回路的电动势为
E??dΦμIdyμIy??0ln11??0??3.84?10?5V dt2πxdt2π由于静止的形导轨上电动势为零,所以
EAB?E??3.84?10?5V
式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A,故点A 电势较高.
8 -14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.
分析 本题亦可用两种方法求解.其中应注意下列两点:1.当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足?v?B??dl?0],因而线框中的总电动势为
E???v?B??dl???v?B??dl???v?B??dl???v?B??dl?Eef?Ehg其等效电路
efghefhg如图(b)所示.
dΦ求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设dtdξ时刻t 时,线框左边距导线的距离为ξ,如图(c)所示,显然ξ是时间t 的函数,且有在?v.
dt2.用公式E??求得线框在任意位置处的电动势E(ξ)后,再令ξ=d,即可得线框在题目所给位置处的电动势.
解1 根据分析,线框中的电动势为
E?Eef?Ehg
???v?B??dl???v?B??dl
efhgl2μ0Ivl2μ0Iv?dl?dl 2πd?02π?d?l1??0?μ0IvI1I2
2π?d?l1?由Eef >Ehg 可知,线框中的电动势方向为efgh.
解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为
Φ??相应电动势为
l10μ0Il2μ0Il2ξ?l1 dx?ln2π?x?ξ?2π?x?ξ?ξE?ξ???dΦμ0Ivl2l1 ?dt2πξ?ξ?l1?令ξ=d,得线框在图示位置处的电动势为
E?μ0Ivl2l1
2πd?d?l1?由E >0 可知,线框中电动势方向为顺时针方向.
*8 -15 有一长为l,宽为b 的矩形导线框架,其质量为m,电阻为R.在t =0时,框架从距水平面y =0 的上方h 处由静止自由下落,如图所示.磁场的分布为:在y =0 的水平面上方没有磁场;在y =0 的水平面下方有磁感强度为B 的均匀磁场,B 的方向垂直纸面向里.已知框架在时刻t1 和t2 的位置如图中所示.求在下述时间内,框架的速度与时间的关系:
(1) t1 ≥t >0,即框架进入磁场前;(2) t2 ≥t≥t1 ,即框架进入磁场, 但尚未全部进入磁场;(3)t >t2 ,即框架全部进入磁场后.
分析 设线框刚进入磁场(t1 时刻)和全部进入磁场(t2 时刻)的瞬间,其速度分别为v10 和v20 .在情况(1)和(3)中,线框中无感应电流,线框仅在重力作用下作落体运动,其速度与时间的关系分别为v=gt(t <t1)和v =v20 +g(t-t2 )(t >t2 ).而在t1<t<t2这段时间内,线框运动较为复杂,由于穿过线框回路的磁通量变化,使得回路中有感应电流存在,从而使线框除受重力外,还受到一个向上的安培力FA ,其大小与速度有关,即
FA?FA(v).根据牛顿运动定律,此时线框的运动微分方程为mg?FA?v??m微分方程可得t1<t<t2 时间内线框的速度与时间的关系式. 解 (1) 根据分析,在t?t1时间内,线框为自由落体运动,于是
dv,解此dtv1?gt?t?t1?其中t?t1时,v1?v10?2gh
(2) 线框进入磁场后,受到向上的安培力为
B2l2FA?IlB?v
R根据牛顿运动定律,可得线框运动的微分方程
B2l2dvmg?v?m
RdtB2l2令K?,整理上式并分离变量积分,有
mR
共分享92篇相关文档