云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 中考数学真题解析:二次函数与一元二次方程(含答案)

中考数学真题解析:二次函数与一元二次方程(含答案)

  • 62 次阅读
  • 3 次下载
  • 2025/12/3 5:52:10

二次函数与x轴的交点情况及与一元二次方程根与系数

一、选择题

1. (2020内蒙古呼和浩特,8,3)已知一元二次方程x2+bx-3=0的一根为-3,在二次函数??1??4??5y=x2+bx-3的图象上有三点??,y1?、??,y2?、?,y3?,y1、y2、y3的大小关系是( ) ?5??4???6A、y1<y2<y3 B、y2<y1<y3 C、y3<y1<y2 D、y1<y3<y2 考点:二次函数图象上点的坐标特征;一元二次方程的解. 分析:将x=-3代入x2+bx-3=0中,求b,得出二次函数y=x2+bx-3的解析式,再根据抛物线的对称轴,开口方向确定增减性,比较y1、y2、y3的大小关系. 解答:解:把x=-3代入x2+bx-3=0中,得9-3b-3=0,解得b=2, ∴二次函数解析式为y=x2+2x-3,抛物线开口向上,对称轴为x=-1,∴y1<y2<y3.故选A. 点评:本题考查了二次函数图象上点的坐标特点,一元二次方程解的意义.关键是求二次函数解析式,根据二次函数的对称轴,开口方向判断函数值的大小.

2. (2011台湾,32,4分)如图,将二次函数y=31x2-999x+892的图形画在坐标平面上,判断方程31x2-999x+892=0的两根,下列叙述何者正确( )

A.两根相异,且均为正根 C.两根相同,且为正根

B.两根相异,且只有一个正根 D.两根相同,且为负根

考点:抛物线与x轴的交点。 专题:综合题。

分析:由二次函数y=31x2-999x+892的图象得,方程31x2-999x+892=0有两个实根,两根都是正数,从而得出答案.

解答:解:∵二次函数y=31x2-999x+892的图象与x轴有两个交点,且与x轴的正半轴相交,

∵方程31x2-999x+892=0有两个正实根.

第1页 共15页

故选A.

点评:本题考查了抛物线与x轴的交点问题,注:抛物线与x轴有两个交点时,方程有两个不等的实根;抛物线与x轴有一个交点时,方程有两个相等的实根;抛物线与x轴无交点时,方程无实根.

3. .(2011?江西,6,3)已知二次函数y=x2+bx﹣2的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是( ) A、(1,0)

B、(2,0) C、(﹣2,0)

D、(﹣1,0)

考点:抛物线与x轴的交点。

分析:把交点坐标(1,0),代入二次函数y=x2+bx﹣2求出b的值,进而知道抛物线的对称轴,再利用公式x=x?x1?x21??,可求出它与x轴的另一个交点坐标. 22解答:解:把x=1,y=0代入y=x2+bx﹣2得: 0=1+b﹣2, ∵b=1, ∵对称轴为x??b1??, 2a2∵x?x1?x21??, 22∵x2=﹣2,

它与x轴的另一个交点坐标是(﹣2,0). 故选C.

点评:本题考查了二次函数和x轴交点的问题,要求交点坐标即可解一元二次方程也可用公式x?x1?x21??。 224. (2011襄阳,12,3分)已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的取值范围是( )

A.k<4

B.k≤4 C.k<4且k≠3

D.k≤4且k≠3

第2页 共15页

考点:抛物线与x轴的交点;根的判别式;一次函数的性质。 专题:计算题。

分析:分为两种情况::①当k-3≠0时,(k-3)x2+2x+1=0,求出①=b2-4ac=-4k+16≥0的解集即可;①当k-3=0时,得到一次函数y=2x+1,与X轴有交点;即可得到答案. 解答:解:①当k-3≠0时,(k-3)x2+2x+1=0, ①=b2-4ac=22-4(k-3)×1=-4k+16≥0, k≤4;

①当k-3=0时,y=2x+1,与x轴有交点. 故选B.

点评:本题主要考查对抛物线与x轴的交点,根的判别式,一次函数的性质等知识点的理解和掌握,能进行分类求出每种情况的k是解此题的关键.

5. (2011湖北孝感,12,3分)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(

1,1),下列结论:①ac<0;①a+b=0;①4ac﹣b2=4a;①a+b+c<0.其中正2确结论的个数是( )

A.1

B.2

C.3

D.4

考点:二次函数图象与系数的关系。 专题:计算题。

分析:根据二次函数图象反应出的数量关系,逐一判断正确性. 解答:解:根据图象可知: ①c<0,c>0 ①ac<0,正确; ①①顶点坐标横坐标等于

1, 2第3页 共15页

①-

b1=, 2a2①a+b=0正确;

①①顶点坐标纵坐标为1,

4ac?b2①=1;

4a①4ac﹣b2=4a,正确;

①当x=1时,y=a+b+c>0,错误. 正确的有3个. 故选C.

点评:本题主要考查了二次函数的性质,会根据图象获取所需要的信息.掌握函数性质灵活运用.

6. (2011广西崇左,18,3分)已知:二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列

结论中:①abc>0;①2a+b<0;①a+b<m(am+b)(m≠1的实数);①(a+c)2<b2;①a>1.其中正确的项是( )

A.①①

B.①①①

C.①①

D.①①①

考点:二次函数图象与系数的关系. 专题:数形结合.

分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断. 解答:解:①①抛物线的开口向上,①a>0,

第4页 共15页

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

二次函数与x轴的交点情况及与一元二次方程根与系数 一、选择题 1. (2020内蒙古呼和浩特,8,3)已知一元二次方程x2+bx-3=0的一根为-3,在二次函数??1??4??5y=x2+bx-3的图象上有三点??,y1?、??,y2?、?,y3?,y1、y2、y3的大小关系是( ) ?5??4???6A、y1<y2<y3 B、y2<y1<y3 C、y3<y1<y2 D、y1<y3<y2 考点:二次函数图象上点的坐标特征;一元二次方程的解. 分析:将x=-3代入x2+bx-3=0中,求b,得出二次函数y=x2+bx-3的解析式,再根据抛物线的对称轴,开口方向确定增减性,比较y1、y2、y3的大小关系. 解答:解:把x=-3代入x2+bx-3=0中,得9-3b-3=0,解得b=2, ∴二次函数解析式为y=x2+2x-

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com