µ±Ç°Î»ÖãºÊ×Ò³ > hhhhh¸ßÖÐÊýѧ×ܸ´Ï°Ìâ×ܽᣨËùÓе¥Ôª×ܽáÓд𰸣©¸ß¿¼±Ø±¸
¸ßÖÐÊýѧ×ܸ´Ï°Ìâ×ܽᣨËùÓе¥Ôª×ܽáÓд𰸣©¸ß¿¼±Ø±¸
¸ÅÄî
Ò»¡¢Ñ¡ÔñÌâ
y£3?1£®ÉèÈ«¼¯U£½{(x£¬y)| x¡ÊR£¬y¡ÊR}£¬¼¯ºÏM£½?£½1?£¬ ?(x,y)|x£2??P£½{(x£¬y)| y¡Ùx£«1}£¬ÄÇôCU(M¡ÈP)µÈÓÚ( )£®
A£®?
B£®{(2£¬3)}
D£®{(x£¬y)| y£½x£«1}
C£®(2£¬3)
2£®ÈôA£½{a£¬b}£¬B?A£¬Ôò¼¯ºÏBÖÐÔªËØµÄ¸öÊýÊÇ( )£® A£®0
B£®1
C£®2
D£®0»ò1»ò2
3£®º¯Êýy£½f(x)µÄͼÏóÓëÖ±Ïßx£½1µÄ¹«¹²µãÊýÄ¿ÊÇ( )£® A£®1
B£®0
C£®0»ò1
D£®1»ò2
4£®É躯Êýf(x)£½2x£«3£¬g(x£«2)£½f(x)£¬Ôòg(x)µÄ±í´ïʽÊÇ( )£® A£®2x£«1
B£®2x£1
C£®2x£3
D£®2x£«7
5. ÒÑÖªº¯Êýf(x)£½ax3£«bx2£«cx£«dµÄͼÏóÈçͼËùʾ£¬Ôò( )£®
A£®b¡Ê(£¡Þ£¬0) C£®b¡Ê(1£¬2) 6£®É躯Êýf(x)£½?B£®b¡Ê(0£¬1) D£®b¡Ê(2£¬£«¡Þ)
(µÚ5Ìâ)
?x2£«bx£«c£¬ x¡Ü 0£¾ 0 ?c£¬x£¬ Èôf(£4)£½f(0)£¬f(£2)£½£2£¬Ôò¹ØÓÚxµÄ
·½³Ìf(x)£½xµÄ½âµÄ¸öÊýΪ( )£®
A£®1
B£®2
C£®3
D£®4
7£®É輯ºÏA£½{x | 0¡Üx¡Ü6}£¬B£½{y | 0¡Üy¡Ü2}£¬ÏÂÁдÓAµ½BµÄ¶ÔÓ¦·¨Ôòf²»ÊÇÓ³ÉäµÄÊÇ( )£®
1
A£®f:x¡úy£½
1x 21B£®f:x¡úy£½x
3C£®f:x¡úy£½
1x 4D£®f:x¡úy£½
1x 68£®ÓÐÏÂÃæËĸöÃüÌ⣺
¢Ùżº¯ÊýµÄͼÏóÒ»¶¨ÓëyÖáÏཻ£» ¢ÚÆæº¯ÊýµÄͼÏóÒ»¶¨Í¨¹ýԵ㣻 ¢Ûżº¯ÊýµÄͼÏó¹ØÓÚyÖá¶Ô³Æ£»
¢Ü¼ÈÊÇÆæº¯Êý£¬ÓÖÊÇżº¯ÊýµÄº¯ÊýÒ»¶¨ÊÇf(x)£½0(x¡ÊR)£® ÆäÖÐÕýÈ·ÃüÌâµÄ¸öÊýÊÇ( )£® A£®1
B£®2
C£®3
D£®4
9£®º¯Êýy£½x2£6x£«10ÔÚÇø¼ä(2£¬4)ÉÏÊÇ( )£® A£®µÝ¼õº¯Êý
B£®µÝÔöº¯Êý D£®ÏȵÝÔöÔٵݼõ
C£®ÏȵݼõÔÙµÝÔö
10£®¶þ´Îº¯Êýy£½x2£«bx£«cµÄͼÏóµÄ¶Ô³ÆÖáÊÇx£½2£¬ÔòÓÐ( )£® A£®f(1)£¼f(2)£¼f(4) C£®f(2)£¼f(4)£¼f(1) ¶þ¡¢Ìî¿ÕÌâ
11£®¼¯ºÏ{3£¬x£¬x2£2x}ÖУ¬xÓ¦Âú×ãµÄÌõ¼þÊÇ £®
12£®Èô¼¯ºÏA£½{x | x2£«(a£1)x£«b£½0}ÖУ¬½öÓÐÒ»¸öÔªËØa£¬Ôòa£½___£¬b£½___£® 13£®½¨ÔìÒ»¸öÈÝ»ýΪ8 m3£¬ÉîΪ2 mµÄ³¤·½ÌåÎÞ¸ÇË®³Ø£¬Èç¹û³Øµ×ºÍ³Ø±ÚµÄÔì¼Ûÿƽ·½Ã×·Ö±ðΪ120ÔªºÍ80Ôª£¬ÄÇôˮ³ØµÄ×îµÍ×ÜÔì¼ÛΪ Ôª£®
14£®ÒÑÖªf(x£«1)£½x2£2x£¬Ôòf(x)£½ £»f(x£2)£½ £® 15£®y£½(2a£1)x£«5ÊǼõº¯Êý£¬ÇóaµÄȡֵ·¶Î§ £®
16£®Éèf(x)ÊÇRÉÏµÄÆæº¯Êý£¬ÇÒµ±x¡Ê£Û0£¬£«¡Þ)ʱ£¬f(x)£½x(1£«x3)£¬ÄÇôµ±x¡Ê (£¡Þ£¬0£Ýʱ£¬f(x)£½ £®
2
B£®f(2)£¼f(1)£¼f(4) D£®f(4)£¼f(2)£¼f(1)
Èý¡¢½â´ðÌâ
17£®ÒÑÖª¼¯ºÏA£½{x¡ÊR| ax2£3x£«2£½0}£¬ÆäÖÐaΪ³£Êý£¬ÇÒa¡ÊR£® ¢ÙÈôAÊǿռ¯£¬ÇóaµÄ·¶Î§£» ¢ÚÈôAÖÐÖ»ÓÐÒ»¸öÔªËØ£¬ÇóaµÄÖµ£» ¢ÛÈôAÖÐÖÁ¶àÖ»ÓÐÒ»¸öÔªËØ£¬ÇóaµÄ·¶Î§£®
18£®ÒÑÖªM£½{2£¬a£¬b}£¬N£½{2a£¬2£¬b2}£¬ÇÒM£½N£¬Çóa£¬bµÄÖµ£®
19£®Ö¤Ã÷f(x)£½x3ÔÚRÉÏÊÇÔöº¯Êý£®
20£®ÅжÏÏÂÁк¯ÊýµÄÆæÅ¼ÐÔ£º (1)f(x)£½3x4£«
1£» x2
(2)f(x)£½(x£1)
1£«x
£» 1£x
1£«1£x£» (3)f(x)£½x£
1£«1£x2£® (4)f(x)£½x2£ 3
µÚÒ»Õ ¼¯ºÏÓ뺯Êý¸ÅÄî
²Î¿¼´ð°¸
Ò»¡¢Ñ¡ÔñÌâ 1£®B
½âÎö£º¼¯ºÏMÊÇÓÉÖ±Ïßy£½x£«1ÉϳýÈ¥µã(2£¬3)Ö®ºó£¬ÆäÓàµã×é³ÉµÄ¼¯ºÏ£®¼¯ºÏPÊÇ×ø±êÆ½ÃæÉϲ»ÔÚÖ±Ïßy£½x£«1Éϵĵã×é³ÉµÄ¼¯ºÏ£¬ÄÇôM?P¾ÍÊÇ×ø±êÆ½ÃæÉϲ»º¬µã(2£¬3)µÄËùÓеã×é³ÉµÄ¼¯ºÏ£®Òò´ËCU(M?P)¾ÍÊǵã(2£¬3)µÄ¼¯ºÏ£®
CU(M?P)£½{(2£¬3)}£®¹ÊÑ¡B£®
2£®D
½âÎö£º¡ßAµÄ×Ó¼¯ÓÐ?£¬{a}£¬{b}£¬{a£¬b}£®¡à¼¯ºÏB¿ÉÄÜÊÇ?£¬{a}£¬{b}£¬{a£¬b}ÖеÄijһ¸ö£¬¡àÑ¡D£®
3£®C
½âÎö£ºÓɺ¯ÊýµÄ¶¨ÒåÖª£¬º¯Êýy£½f(x)µÄͼÏóÓëÖ±Ïßx£½1ÊÇÓпÉÄÜûÓн»µãµÄ£¬Èç¹ûÓн»µã£¬ÄÇô¶ÔÓÚx£½1½öÓÐÒ»¸öº¯ÊýÖµ£®
4£®B
½âÎö£º¡ßg(x£«2)£½2x£«3£½2(x£«2)£1£¬¡àg(x)£½2x£1£® 5£®A
½âÎö£ºÒªÉÆÓÚ´Óº¯ÊýµÄͼÏóÖзÖÎö³öº¯ÊýµÄÌØµã£® ½â·¨1£ºÉèf(x)£½ax(x£1)(x£2)£½ax3£3ax2
£«2ax£¬±È½ÏϵÊýµÃb£½£3a£¬c£½2a£¬d£½0£®ÓÉ
(µÚ5Ìâ)
f(x)µÄͼÏó¿ÉÒÔÖªµÀf(3)£¾0£¬ËùÒÔ
f(3)£½3a(3£1)(3£2)£½6a£¾0£¬¼´a£¾0£¬ËùÒÔb£¼0£®ËùÒÔÕýÈ·´ð°¸ÎªA£®
4
¹²·ÖÏí92ƪÏà¹ØÎĵµ