当前位置:首页 > 高三文科数学模拟试题含答案
∴AC2?AD2?CD2,故AC?AD 又∵AA1?平面ABCD ∴AA1?AD,而AA1AC?A
∴AD?平面AA1C…………9分
1313??1?1?3?(3)V?VC?AA1B1B?VC?AA1D1D??1?1?…………13分
323220. (本小题满分12分)
解:(1)由an?1?2Sn?2(n?Z*)得an?2Sn?1?2(n?N*,n?2), 两式相减得:an?1?an?2an, 即an?1?3an(n?N*,n?2),
∵{an}是等比数列,所以a2?3a1,又a2?2a1?2, 则2a1?2?3a1,∴a1?2, ∴an?23n?1. …………………………………6分 (2)由(1)知an?1?23n,an?23n?1
4?3n?1∵an?1?an?(n?1)dn ,∴dn?,………8分
n?1令Tn?则Tn?1111???…?,
dnd1d2d3234n?1?+… ① ??n?1012434?34?34?3123nn?1Tn?????… ②
43n?143n34?314?321n?12211??①-②得Tn?… ???43n?143n3430431432152n?5. ………………12分 ?Tn??n?116163?c62???a?3a3??2?21. 解:(1)根据题意,?b?1,解得,?b?1.
?a2?b2?c2?c2?2????x2所以椭圆方程为?y2?1. ………………………………5分
3(2)将y?kx?2代入椭圆方程,得(1?3k2)x2?12kx?9?0,由直线与椭圆有两个交点,
所以??(12k)2?36(1?3k2)?0,解得k2?1. 设C(x1,y1)、D(x2,y2),则x1?x2??12k9,,若以CD为直径的圆过E点,x?x?121?3k21?3k2则EC?ED?0,即(x1?1)(x2?1)?y1y2?0,
而y1y2?(kx1?2)(kx2?2)=k2x1x2?2k(x1?x2)?4,所以
9(k2?1)12k(2k?1)(x1?1)(x2?1)?y1y2?(k?1)x1x2?(2k?1)(x1?x2)?5???5?0,解得221?3k1?3k27,满足k2?1. 67所以存在k?,使得以线段CD为直径的圆过E点. ………………………………13分
6 k?
共分享92篇相关文档