当前位置:首页 > 2017-2018学年河南省南阳市名校高一下学期期中考试数学卷
2017-2018学年河南省南阳市高一下学期期中考试数学卷
第Ⅰ卷(共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.下面的抽样方法是简单随机抽样的是( )
A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709为三等奖.
B.某车间包装一种产品,在自动的传送带上,每隔5分钟抽一包产品,称其重量是否合格. C.某校分别从行政,教师后勤人员中抽取2人,14人,4人了解学校机构改革的意见. D.用抽签法从10件产品中选取3件进行质量检验.
2.一个人打靶时连续射击两次,则事件“恰有一次中靶”的互斥事件是( )
A.至多有一次中靶 B.两次都中靶 C.恰有一次不中靶 D.至少有一次中靶
3.计算机执行右面的程序后,输出的结果是( )
A.4,1 B.1,3 C.0,0 D.6,0
4.从随机编号为0001,0002,…,1500的1500名参加这次全市期中考试的学生中用系统0068,抽样的方法抽取一个样本进行成绩分析,已知样本中编号最小的两个编号分别0018,
则样本中最大的编号应该是( )
A.1466 B.1467 C.1468 D.1469
5.如图的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为( )
A.
3734 B. C. D. 1010556.为了考查两个变量x和y之间的线性关系,甲、乙两位同学各自独立作了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1、l2,已知两人得的试验数据中,变量
x和y的数据的平均值都相等,且分别都是s、t,那么下列说法正确的是( )
A.直线l1和l2一定有公共点(s,t) B.必有直线l1∥l2 C.直线l1和l2相交,但交点不一定是(s,t) D.l1和l2必定重合 7.x是x1,x2,
,x100的平均数,a是x1,x2,
,x40的平均数,b是x41,x42,
,
x100的平均数,则下列各式正确的是( )
2332a?bA.x?a?b B.x?a?b C.x?a?b D.x?
555528.如图是一个中心对称的几何图形,已知大圆半径为2,以半径为直径画出两个半圆,在大圆内随机取一点,则此点取自阴影部分的概率为( )
1?11A. B. C. D.
88429.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算机给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表
示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数: 7527029371409857034743738636694714174698
0371623326168045601136619597742476104281根据以上数据统计该运动员射击4次至少击中3次的概率为( ) A.0.852 B.0.8192 C.0.8 D.0.75
10.已知△ABC中,C?90?,AB?2AC,在斜边AB上任取一点P,则满足?ACP?30?的概率为( ) A.
1111 B. C. D. 234511.现有1名女教师和2名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说题,其中恰有一男一女抽到同一道题的概率为( )
1213A. B. C. D.
332412.执行如图所示的算法程序框图,若输入m?1,n?3,输出的x?1.75,则空白判断框内应填的条件为( )
A.m?n?1 B.m?n?0.5 C.m?n?0.2 D.m?n?0.1
第Ⅱ卷(共90分)
二、填空题(每题5分,满分20分,将答案填在答题纸上)
1]随机抽取2n个数,x1,x2,,xn,y1,y2,,yn,13.从区间[0,构成n个数对(x1,y1),
(x2,y2),,(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法
得到的圆周率?的近似值为 .
14.运行右边算法语句输出x的结果是 .
b则直线ax?by?0与圆(x?2)2?y2?215.将一颗骰子先后两次投掷两次分别得到点数a,
有公共点的概率为 .
1222216.已知样本数据a1,a2,a3,a4,a5的方差s2?(a12?a2?a3?a4?a5?20),则样本数
5据2a1?1,2a2?1,2a3?1,2a4?1,2a5?1的平均数为 .
三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 由经验得知,在某商场付款处排队等候付款的人数及概率如表: 排队人数 概率 0 1 0.16 2 0.3 3 4 0.1 5人以上 0.1 0.3 0.04 (1)至少有2人排队的概率是多少? (2)至少有2人排队的概率是多少?
18. 根据右边算法的程序,画出其相应的算法程序框图,并指明该算法的目的.
19. 某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期 昼夜温差 10 1月10日 2月10日 3月10日 4月10日 5月10日 6月10日 x(?C) 就诊人数y(个) 11 25 13 29 12 26 8 16 6 22 12 该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验. (1)求选取的2组数据恰好是相邻两月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程y?bx?a;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想? 参考数据11?25?13?29?12?26?8?16?1092,112?132?122?82?498
(参考公式:b??xyii?1nni?nxy?nx2??(xi?1nni?x)(yi?y),a?y?bx)
i?xi?12i?(xi?1?x)220. 某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破2,,25)由右边的程序运行后,坏,但可见部分如图,且将全班25人的成绩记为Ai(i?1,输出n?10.据此解答如下问题:
共分享92篇相关文档