µ±Ç°Î»ÖãºÊ×Ò³ > ¹þ¶û±õ¹¤Òµ´óѧ2013Äê¸ÅÂÊͳ¼ÆÊÔÌâ¼°´ð°¸
2013
Äê¹þ¹¤´ó¸ÅÂÊͳ¼ÆÊÔÌâ¼°´ð°¸
Ò»¡¢Ìî¿ÕÌ⣨ÿСÌâ3·Ö£¬¹²5СÌ⣬Âú·Ö15·Ö£©
1£®ÉèËæ»úʼþA, B, CÏ໥¶ÀÁ¢£¬ÇÒP(A)?0.5, P(B)?0.25, P(C)?0.2£¬ÔòËæ»úʼþA, B, CÖÁÉÙÓÐÒ»¸ö²»·¢ÉúµÄ¸ÅÂÊΪ________________ £®
2£®ÉèËæ»ú±äÁ¿X·þ´ÓÕý̬·Ö²¼N(0,1)£¬ÔòËæ»ú±äÁ¿Y?XµÄ¸ÅÂÊÃܶÈ
fY(y)?
______________ _ _ £®
3£®ÉèX, YÊÇËæ»ú±äÁ¿£¬EX?2, DX?25, EY?1, DY?16, ?XY?0.4Ôò
E(2X?3Y?4)2? £®
24£®ÉèijÖÖÈÜÒºÖÐÔÓÖʵÄŨ¶È·þ´ÓN(?,?)£¬½ñÈ¡Ñù4´Î£¬²âµÃƽ¾ùÖµx?0.834£¬Ñù±¾±ê×¼²î
s?0.0003£¬Ôò?µÄÖÃÐŶÈΪ0.95µÄÖÃÐÅÇø¼äΪ________________ __£®
5£®ÉèËæ»ú±äÁ¿X, YÏ໥¶ÀÁ¢£¬ÇÒ¾ù·þ´Ó²ÎÊýΪ8µÄÖ¸Êý·Ö²¼£¬Ôò
P{min(X,Y)?1}?______ £®
×¢£º¿ÉÑ¡ÓõIJ¿·ÖÊýÖµ£ºt0.05(4)?2.1318, t0.025(3)?3.1824, t0.025(4)?2.7764,
?(1.96)?0.975, ?(1.645)?0.95£®
¶þ¡¢Ñ¡ÔñÌ⣨ÿСÌâ3·Ö£¬¹²5СÌ⣬Âú·Ö15·Ö£©
1£®ÉèËæ»ú±äÁ¿XÓëYÏ໥¶ÀÁ¢£¬ÇÒP(X?1)?P(Y?1)?p, P(X?0)?P(Y?0)?1?p£¬
?1, X?YΪżÊý(0?p?1)£¬ÁîZ??£¬ÒªÊ¹XÓëZ¶ÀÁ¢£¬ÔòpµÄÖµÓ¦µÈÓÚ
?0, X?YÎªÆæÊý£¨A£©12£® £¨B£©14£® £¨C£©13£® £¨D£©23£® ¡¾ ¡¿ 2£®ÏÂÁк¯Êý¿É×÷Ϊ¸ÅÂÊÃܶȺ¯ÊýµÄÊÇ
(x??)?1?2?2(1?|x|), |x|?1e2?, x?0? (??0)£® £¨A£©f(x)??£® £¨B£©f(x)??2¦Ð?? 0, |x|?1? 0, x?0?2? x, ?1?x?0??e??x,x?0?£¨C£©f(x)??3x4, 0?x?2£® £¨D£©f(x)?? (??0)£® ¡¾ ¡¿
x?0?0, ÆäËû?0,?3£®ÉèX1, X2, ²î£¬S*
2, XnΪÀ´×Ô×ÜÌåN(?,?2)µÄ¼òµ¥Ëæ»úÑù±¾£¬ ÆäÖÐXΪÑù±¾¾ùÖµ£¬S2ΪÑù±¾·½
ΪÑù±¾µÄ¶þ½×ÖÐÐľأ¬Ôò
1
£¨A£©
(n?1)S*2?2~?2(n?1)£® £¨B£©
X??n?1~t(n?1)£® *S nS2X??2~?(n?1)n?1~t(n?1)£® ¡¾ ¡¿ £¨C£©£® £¨D£© ?2S 4£®ÉèËæ»ú±äÁ¿X~U[1, 7]£¬Y~B(8, 0.5)£¬ÇÒ?XY?16£¬Ôò¸ù¾ÝÇбÈÑ©·ò²»µÈʽÓÐ
P(X?3?Y?X?3)?__________£®
1251 £¨A£©£® £¨B£©£® £¨C£©£® £¨D£©£® ¡¾ ¡¿
4636 5£®ÉèX1, X2, £¨A£©
, XnÊÇÀ´×Ô×ÜÌåN(0, 1)µÄ¼òµ¥Ëæ»úÑù±¾£¬ÔòÏÂÁÐͳ¼ÆÁ¿µÄ·Ö²¼Öв»ÕýÈ·µÄÊÇ ~?(n)£® £¨B£©n?1Xn2?Xi?1n2i?Xi?1n?12i~t(n?1)£®
2i21nn £¨C£©?Xi~N(0, 1)£® £¨D£©(?1)?Xi22ni?1i?1?Xi?3n ~F(2, n?2)£® ¡¾ ¡¿
Èý¡¢£¨9·Ö£©½ñ´Ó×°ÓÐÒ»µÈÆ·2¼þ£¬¶þµÈÆ·4¼þµÄ¼×Ïä×ÓÖÐÈÎÈ¡2¼þ²úÆ·£¬È»ºó½«2¼þ²úÆ··ÅÈ뺬ÓÐ
3¼þÒ»µÈÆ·2¼þ¶þµÈÆ·µÄÒÒÏäÖУ¬ÔÙ´ÓÒÒÏäÖÐÈÎÈ¡1¼þ²úÆ·£¬Çó£º £¨1£©´ÓÒÒÏäÖÐÈ¡µ½1¼þÒ»µÈÆ·µÄ¸ÅÂÊ£»
£¨2£©ÒÑÖª´ÓÒÒÏäÖÐÈ¡³ö1¼þÒ»µÈÆ·µÄÌõ¼þÏ£¬´Ó¼×ÏäÖÐÈ¡³ö1¼þÒ»µÈÆ·ºÍ1¼þ¶þµÈÆ·µÄ¸ÅÂÊ¡£ ËÄ¡¢£¨9·Ö£©ÉèËæ»ú±äÁ¿XºÍYµÄÁªºÏ·Ö²¼ÔÚÒÔµã(0, 1)£¬(1, 0)£¬(1, 1)Ϊ¶¥µãµÄÈý½ÇÐÎÇøÓòÄÚ·þ
´Ó¾ùÔÈ·Ö²¼¡£Ç󣺣¨1£©Ëæ»ú±äÁ¿Z?2X?YµÄ¸ÅÂÊÃܶÈfZ(z)£»£¨2£©·½²îDZ£® Îå¡¢£¨9·Ö£©ÔÚÇø¼ä[0, 1]ÉÏÈÎÈ¡n¸öµãX1, X2, , Xn£¬¼ÇX(1)?min?X1, X2, , Xn?£¬
X(n)?max?X1, X2, , Xn?£¬X?X(n)?X(1)£®ÇóEX£®
Áù¡¢£¨9·Ö£©Éè×ÜÌåXµÄ¸ÅÂÊÃܶÈΪ
??2x?3e??x, x?0 f(x;?)??
?0, x?0ÆäÖÐ??0Ϊδ֪²ÎÊý£¬X1, X2, , XnΪÀ´×Ô×ÜÌåXµÄ¼òµ¥Ëæ»úÑù±¾¡£Çó£º
£¨1£©?µÄ¾Ø¹À¼ÆÁ¿£»£¨2£©?µÄ×î´óËÆÈ»¹À¼ÆÁ¿¡£
Æß¡¢£¨4·Ö£©ÔÚxÖáÉÏÓÐÒ»¸öÖʵã¿ÉÒÔÔÚÕû¸öÊýÖáµÄÕûÊýµãÉÏÓζ¯£¬¼ÇXn±íʾʱ¿ÌnʱÖʵãµÄλ
Ö᣸ÃÖʵãÒÆ¶¯µÄ¹æÔòÊÇ£ºÃ¿¸ôµ¥Î»Ê±¼ä£¬·Ö±ðÒÔ¸ÅÂÊp¼°¸ÅÂÊq?1?p(0?p?1)ÏòÕý µÄ¼°¸ºµÄ·½ÏòÒÆ¶¯Ò»¸öµ¥Î»¡£¼ÙÉèÖʵãÔÚʱ¿Ìt?0ʱ£¬Î»ÓÚa£¬¼´X0?a (a?0)£¬¶øÔÚ0ºÍ
a?b (b?0)´¦¸÷ÓÐÒ»¸öÎüÊÕ±Ú£¨¼´ÖʵãÒÆ¶¯µ½0ºÍa?bʱ£¬½«²»ÄÜÔÙÒÆ¶¯£©¡£ÇóÖʵãµÄ³õʼλÖÃ
2
Ϊa¶ø×îÖÕÔÚa?b±»ÎüÊյĸÅÂÊua.
£¨Ìáʾ£º un?pun?1?qun?1, n?1,2,,a?b?1. u0?0, ua?b?1£©
Ò»¡¢Ìî¿ÕÌ⣺£¨15·Ö£©
?0,1. 2. fY(y)??40?2?(y),390,?y?0???2?y22e,y?0??2¦Ðy?0y?0 3.148
.4.(0.8335, 0.8345). 5£®1?e-16 ¶þ¡¢Ñ¡ÔñÌ⣺£¨15·Ö£© 1A 2D 3B 4C 5C
Èý¡¢½â£º£¨1£©ÉèA= ¡®´ÓÒÒÏäÖÐÈ¡µ½1¼þ²úÆ·ÊÇÒ»µÈÆ·¡¯
Bi?¡®´Ó¼×ÏäÖÐÇ¡ºÃÈ¡µ½i¼þÒ»µÈÆ·¡¯ i?0,1,2.
i2?iC2C43?iP(A)??P(Bi)P(ABi)???7C62i?0i?022
?CC3CC4CC511??????22277721C6C6C6022412142204 5·Ö
11C2C44?2P(B1)P(AB1)7212?4432C6????? £¨2£©P(B1A)?
11P(A)116?5755212?1 4·Ö
ËÄ¡¢½â£º£¨1£©Èý½ÇÐÎÇøÓòG?{(x,y):0?x?1,0?y?1,x?y?1}Ëæ»ú±äÁ¿XºÍYµÄÁªºÏÃܶÈΪ
?2 Èô(x,y)?G f(x,y)???0 Èô(x,y)?GÁîZ?2X?YµÄ¸ÅÂÊÃܶȺ¯ÊýΪfZ(z)
ÀûÓúͺ¯ÊýµÄ¸ÅÂÊÃܶȹ«Ê½ÓУºfZ(z)??f(x,z?2x)dx
????x?z?2x?1,?z?x?1,??x?1,??x?1, ʹf(x,z?2x)²»ÎªÁãµÄÇøÓò£º??z?2x?1?z?2x?1?? 3
µ±1?z?2ʱ£¬fZ(z)??z?12dx?2(z?1?(2z?1z?1))?z?1; 2µ±2?z?3ʱ£¬fZ(z)??z?12dx?2(1?21z?1)?3?z; 2ÆäËü£¬fZ(z)?0 4·Ö
£¨2£©ÒÔf1(x)±íʾXµÄ¸ÅÂÊÃܶȣ¬Ôòµ±x?0»òx?1ʱ£¬f1(x)?0£¬µ±0?x?1ʱ£¬ÓÐ
f??1(x)????f(x,y)dy??11?x2dy?2x
?EX??1202x2dx?3 EX2??1102x3dx?2
DX?EX2?(EX)2?12?419?18 ͬÀí¿ÉµÃ EY?213£¬ DY?18£¬ EXY???2xydxdy?2?110xdx?1?xydy?5G12 cov(X,Y)?EXY?EX?EY?512?49??136 ÓÚÊÇ D(2X?Y)?4DX?DY?4COV(X,Y)?4?118?118?4?(?1136)?6 5
Îå¡¢½â£ºÉèX1,,XnΪȡµÄµã£¬ÔòËüÃÇÏ໥¶ÀÁ¢Í¬·Ö²¼U(0,1)£¬ X?max{X1,,Xn} ?min{X1,,Xn}
?0,x?0?0,x?0 F?x?1 F?max(x)??xn,0?min(x)??1?(1?x)n,0?x?1
??1,x?1??1,x?1 fx)???nxn?1,0?x?1?0,ÆäËû fn(1?x)n?1,0?x?1max(min(x)??
??0,ÆäËû Emax??1n0nxndx?n?1 Emin??10n(1?x)n?1xdx?1n?1 8·Ö
EX?Emax?Emin?n?1n?1 1·Ö
4
·Ö
¹²·ÖÏí92ƪÏà¹ØÎĵµ