云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2019年河南省2018年中考数学试卷及答案解析(word版)

2019年河南省2018年中考数学试卷及答案解析(word版)

  • 62 次阅读
  • 3 次下载
  • 2025/5/4 21:51:00

【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.

23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C. (1)求抛物线的解析式;

(2)过点A的直线交直线BC于点M.

①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;

②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.

【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;

(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2行四边形的性质得到PQ=AM=21,利用∠PDQ=45°得到PD=

,接着根据平

,PQ⊥BC,作PD⊥x轴交直线BC于D,如图

PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),

讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;

②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),

AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣

,则解方程组

得M1点的坐标;作直线BC上作点

M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=

,然后求出x即可得到M2的

坐标,从而得到满足条件的点M的坐标.

【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5), 当y=0时,x﹣5=0,解得x=5,则B(5,0), 把B(5,0),C(0,﹣5)代入y=ax2+6x+c得∴抛物线解析式为y=﹣x2+6x﹣5;

(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0), ∵B(5,0),C(0,﹣5), ∴△OCB为等腰直角三角形, ∴∠OBC=∠OCB=45°, ∵AM⊥BC,

∴△AMB为等腰直角三角形, ∴AM=

AB=

×4=2

,解得

∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ, ∴PQ=AM=2

,PQ⊥BC,

作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°, ∴PD=

PQ=

×2

=4,

设P(m,﹣m2+6m﹣5),则D(m,m﹣5), 当P点在直线BC上方时,

PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4, 当P点在直线BC下方时,

PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=综上所述,P点的横坐标为4或

,m2=

②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2, ∵M1A=M1C, ∴∠ACM1=∠CAM1, ∴∠AM1B=2∠ACB,

∵△ANB为等腰直角三角形,

∴AH=BH=NH=2, ∴N(3,﹣2),

易得AC的解析式为y=5x﹣5,E点坐标为(,﹣), 设直线EM1的解析式为y=﹣x+b, 把E(,﹣)代入得﹣

+b=﹣,解得b=﹣

∴直线EM1的解析式为y=﹣x﹣

解方程组得

,则M1(

,﹣);

作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,

设M2(x,x﹣5), ∵3=∴x=∴M2(

,﹣),

,﹣

)或(

,﹣).

综上所述,点M的坐标为(

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目. 23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C. (1)求抛物线的解析式; (2)过点A的直线交直线BC于点M. ①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标; ②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标. 【分析】(1)利用一次函数解析式确定C(0,﹣5),B

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com