当前位置:首页 > 工程软件技能训练说明书模板 - 图文
工程软件技能训练
图2.5双曲面齿轮副受力情况
双曲面齿轮传动比为:
i0s?F2r2r2cos?2?F1r1r1cos?1 (2.2)
式中:
i0s 双曲面齿轮传动比;
r1 主动齿轮平均分度圆半径,mm; r2 从动齿轮平均分度圆半径,mm。 螺旋锥齿轮传动比i0L为:
i0L?r2r1 (2.3)
令K?cos?2,则i0s=Ki0L。由于β1>β2,所以系数K>1,一般为1.25~1.50[7]。 cos?13、圆柱齿轮传动
圆柱齿轮传动(图2.4c)一般采用斜齿轮,广泛应用于发动机横置且前置前驱动的轿车驱动桥(图2.6)和双级主减速器贯通式驱动桥。
4、蜗杆传动
蜗杆(图2.4d)传动与锥齿轮传动相比有如下优点:
(1)在轮廓尺寸和结构质量较小的情况下,可得到较大的传动比(可大于7)。 (2)在任何转速下使用均能工作得非常平稳且无噪声。 (3)便于汽车的总布置及贯通式多桥驱动的布置。 (4)能传递大的载荷,使用寿命长。 5、结构简单,拆装方便,调整容易。
但是由于蜗轮齿圈要求用高质量的锡青铜制作,故成本较高;另外,传动效率较低。
5
工程软件技能训练
蜗杆传动主要用于生产批量不大的个别重型多桥驱动汽车和具有高转速发动机的大客车上[8]。
图2.6 发动机横置且前置前驱动轿车驱动桥
2.4 主减速器的减速形式
主减速器的减速形式可分为单级减速、双级减速、双速减速、单双级贯通、单双级减速配以轮边减速等[9]。 2.4.1 单级主减速器
图2.7 单级主减速器
可由一对圆锥齿轮、一对圆柱齿轮或由蜗轮蜗杆组成,具有结构简单、质量小、成本低、使用简单等优点。但是其主传动比i0不能太大,一般i0≤7,进一步提高i0将增大从动齿轮直径,从而减小离地间隙,且使从动齿轮热处理困难。
单级主减速器广泛应用于轿车和轻、中型货车的驱动桥中。
6
工程软件技能训练
2.4.2双级主减速器
双级主减速器与单级相比,在保证离地间隙相同时可得到大的传动比,i0一般为7~12。但是尺寸、质量均较大,成本较高。它主要应用于中、重型货车、越野车和大客车上。
整体式双级主减速器有多种结构方案:第一级为锥齿轮,第二级为圆柱齿轮(图2.9a);第一级为锥齿轮,第二级为行星齿轮;第一级为行星齿轮,第二级为锥齿轮(图2.9b);第一级为圆柱齿轮,第二级为锥齿轮(图2.9c)。对于第一级为锥齿轮、第二级为圆柱齿轮的双级主减速器,可有纵向水平(图2.9d)、斜向(图2.9e)和垂向(图2.9f)三种布置方案。
在具有锥齿轮和圆柱齿轮的双级主减速器中分配传动比时,圆柱齿轮副和锥齿轮副传动比的比值一般为1.4~2.0,而且锥齿轮副传动比一般为1.7~3.3,这样可减小锥齿轮啮合时的轴向载荷和作用在从动锥齿轮及圆柱齿轮上的载荷,同时可使主动锥齿轮的齿数适当增多,使其支承轴颈的尺寸适当加大,以改善其支承刚度,提高啮合平稳性和工作可靠性。
图2.8 双级主减速器
双速主减速器(图2.8)内由齿轮的不同组合可获得两种传动比。它与普通变速器相配合,可得到双倍于变速器的挡位。双速主减速器的高低挡减速比是根据汽车的使用条件、发动机功率及变速器各挡速比的大小来选定的。大的主减速比用于汽车满载行驶或在困难道路上行驶,以克服较大的行驶阻力并减少变速器中间挡位的变换次数;小的主减速比则用于汽车空载、半载行驶或在良好路面上行驶,以改善汽车的燃料经济性和提高平均车速。
7
工程软件技能训练
双速主减速器的换挡是由远距离操纵机构实现的,一般有电磁式、气压式和电一气压综合式操纵机构。由于双速主减速器无换挡同步装置,因此其主减速比的变换是
在停车时进行的。双速主减速器主要在一些单桥驱动的重型汽车上采用[10]。
(a) (b) (c)
(d) (e)
图2.9 双级主减速器布置方案
2.4.3 单双级减速配轮边减速器
在设计某些重型汽车、矿山自卸车、越野车和大型公共汽车的驱动桥时,由于传动系总传动比较大,为了使变速器、分动器、传动轴等总成所受载荷尽量小,往往将驱动桥的速比分配得较大。当主减速比大于12时,一般的整体式双级主减速器难以达到要求,此时常采用轮边减速器。这样,不仅使驱动桥的中间尺寸减小,保证了足够的离地间隙,而且可得到较大的驱动桥总传动比。另外,半轴、差速器及主减速器从动齿轮等零件由于所受载荷大为减小,使它们的尺寸可以减小。但是由于每个驱动轮旁均设一轮边减速器,使结构复杂,成本提高,布置轮毂、轴承、车轮和制动器较困难。
综上分析,本设计中采用单级减速器就能满足要求。
2.5 本章小结
本章首先确定了主减速比,用以确定其它参数。对主减速器型式确定中主要从主减速器齿轮的类型、主减速器的减速形式、主减速器主动锥齿轮的支承形式及安装方式的选择、从动锥齿轮的支承方式和安装方式的选择。
8
共分享92篇相关文档