当前位置:首页 > 高考数学(理)一轮复习精品特训专题六:数列(7)数列的综合应用A(1)
10答案及解析: 答案:A 解析:
?{a1?a2?1,a3?3,?a3a2?2, a2a1an?1?2n?1, anan?1}an是以
1为首项,2为公差的等差数列,??a2014a2014a2013???(2?2013?1)(2?2012?1)?4?20122?1. a2012a2013a2012故选:A.
11答案及解析: 答案:-127 解析:
12答案及解析: 答案:4
解析:由等差数列的性质知a1?a2?x?y; 由等比数列的性质知b1b2?xy,
(a1?a2)2(x?y)2x2?y2?2xyx2?y22xy???2??2??4, 所以bbxyxyxyxy12当且仅当x?y时取等号. 故答案为:4.
13答案及解析:
22n?12答案:3?n?3
22,an?1?Sn?① 33224可得a2?S1?3,a2?a1?3?3,
2则可得an?Sn?1?3,n?2②,
解析:由a1?由an?Sn?Sn?1, ①-②可得an?1?2an 则an?a2?2n?2?3?2n?2?3?3?2n 上式对n?1也成立 则an?1n?1??2,bn??an????2n? 3?3?41232当n?1时, b1?b2?0?1?1?3?1?3
252当n?2时, b1??b2?b3?b4?0?1?2?5?8?3?2?3;
272当n?3时, b1??b2?b3?b4?b5?b6?0?1?2?5?10?21?39?3?3?3;
当n?4时,
292b1??b2?b3?b4?b5?b6?b7?b8?0?1?2?5?10?21?42?85?166??4?;...,
33则数列?bn?
22n?12的前2n项和为b1?b2?b3?b4?...?b2n?1?b2n?3?n?3.
14答案及解析: 答案:7 解析:
15答案及解析:
2??2Sn?an?1?an?1答案:1.当n?2时,有? 22S?a?a?nn?n?1∴2an?a2n?1?a2n?an?1?an, ∴?an?1?an??an?1?an???an?1?an? 又∵an?0,∴an?1?an?1 当n?1时,有2S1?a22?a2?2 ∴a1?1, ∴d?a2?a1?1
∴数列?an?是以a1?1为首项, d?1为公差的等差数列 2.由1及??2,得an?n,∴bn?则Tn?21?22?23?123?n2n,
+n?1n?n?1?**? 2n2n112*T?????, n2n22223?*???**?:1111Tn?1?2?3?22221?11??1n2?2n?n?n?1?1221?2????n?1?1?n
2n?12n2n?11n2n?1?n?2∴Tn?2?n?1?n? n222解析:
共分享92篇相关文档