当前位置:首页 > 关于遗传算法的研究 毕业论文
关于遗传算法的研究
摘要:在本篇论文主要讨论的是通过介绍生物的遗传问题,什么是遗传算法(genetic Algorithm),遗传算法的性质,应用,传统遗传算法的基本步骤和遗传算法的目前的发展趋向等等内容,使大家得到关于遗传算法的比较深厚的了解。
中文关键词:遗传;遗传算法;染色体;基因;基因地点;基因特征值;适应度 英文关键词:Genetic;Genetic Algorithm;Chronmosome;Gene;Locus;
Gene Feature;Fitness
关于遗传算法的研究
1、 生物的遗传问题与自然选择:
众所周知,生命的出现,变化以及其消亡是必然的。在地球上最早的生命出现以来,在自然界中多种多样的生物一起存在着并且生命的形式与物种不断发生着变化。由于不同原因,一些物种相继消亡,有一些物种得以生存到现在且还有一些生物改变到另一种生物。那么到底是什么原因导致这种情况呢?
我们先看一下达尔文的自然选择学说的主要内容。
达尔文的自然选择学说是一种被人们广泛接受的生物进化学说。这种学说认为,生物要生存下去,就必须进行生存斗争。生存斗争包括种内斗争、种间斗争以及生物跟无机环境之间的斗争三个方面。在生存斗争中,具有有利变异的个体容易存活下来,并且有更多的机会将有利变异传给后代;具有不利变异的个体就容易被淘汰,产生后代的机会也少的多。因此,凡是在生存斗争中获胜的个体都是对环境适应性比较强的。达尔文把这种在生存斗争中适者生存,不适者淘汰的过程叫做自然选择。它表明,遗传和变异是决定生物进化的内在因素。自然界中的多种生物之所以能够适应环境而得以生存进化,是和遗传和变异生命现象分不开的。
总之,在这个问题中,我们把主要原因概括在下列两个方面:一个是自然界为生命存在方式所提供的条件即有些生物由于对自然界的适应能力比较强,它们都能适应自然环境的各种变化,反而,还有一些生物的适应能力比较弱,所以它们不能适应自然环境和资源的变化并且很容易就被自然界淘汰。原因之二是生物自身的遗传与变异功能。生物的遗传能力使物体得以延续到至今。
2、 遗传算法及其性质和应用:
就像我们上面所说的,不管在生命的延续还是消亡过程中,我们最要关注的是提高生物的对自然界的适应度即使地球上的生命形式得到最优解。在这样,我们要使用遗传算法来解决该问题。
2.1 遗传算法的定义:
遗传算法(Genetic Algorithm)是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。它是
1
有美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Hilland教授所提出的GA通常为简单遗传算法(SGA)。 遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。
遗传算法是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型。它的思想源于生物遗传学和适者生存的自然规律,是具有“生存+检测”的迭代过程的搜索算法。遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。 作为一种新的全局优化搜索算法,遗传算法以其简单通用、鲁棒性强、适于并行处理以及高效、实用等显著特点,在各个领域得到了广泛应用,取得了良好效果,并逐渐成为重要的智能算法之一。
2.2 遗传算法的基本性质:
遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法。遗传算法作为一种快捷、简便、容错性强的算法,在各类结构对象的优化过程中显示出明显的优势。与传统的优化算法相比,主要有以下特点:
● 搜索过程不直接作用在变量上,而是在参数集进行了编码的个体。此编码操作,使得遗传算法可直接对结构对象(集合、序列、矩阵、树、图、链和表)进行操作。
2
● 搜索过程是从一组解迭代到另一组解,采用同时处理群体中多个个体的方法,降低了陷入局部最优解的可能性,并易于并行化。
● 采用概率的变迁规则来指导搜索方向,而不采用确定性搜索规则。对搜索空间没有任何特殊要求(如连通性、凸性等),只利用适应性信息,不需要导数等其它辅助信息,适应范围更广。
● 遗传算法直接以适应度作为搜索信息,无需导数等其它辅助信息。 ● 遗传算法使用多个点的搜索信息,具有隐含并行性。 ● 遗传算法使用概率搜索技术,而非确定性规则。 ● 遗传算法以决策变量的编码作为运算对象。
2.3 遗传算法的主要应用:
由于遗传算法的整体搜索策略和优化搜索方法在计算是不依赖于梯度信息或其它辅助知识,而只需要影响搜索方向的目标函数和相应的适应度函数,所以遗传算法提供了一种求解复杂系统问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,所以广泛应用于许多科学,下面我们将介绍遗传算法的一些主要应用领域: 2.3.1 函数优化:
函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。对于一些非线性、多模型、多目标的函数优化问题,用其它优化方法较难求解,而遗传算法可以方便的得到较好的结果。 2.3.2 组合优化:
随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。实践证
3
共分享92篇相关文档