当前位置:首页 > 基于单片机的安全防盗装置设计_毕业设计论文
本科毕业设计说明书(论文)第9页共38 页
3.3 单片机控制电路
3.3.1AT89C52单片机简介
本次毕业设计选用的单片机是AT89C52,AT89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,AT89C52单片机在电子行业中有着广泛的应用。 3.3.2 引脚排列了及其功能
AT89C52单片机的封装形式有PDIP,TQFP和PLCC等,图5是其PDIP(Plastic Dual In-Line Package)封装的引脚排列图4所示。
图5 AT89SC2单片机引脚排列图(PDIP封装)
主要引脚说明:
P0口
P0口是一组8 位漏极开路型双向I/O 口,也即地址/数据总线复用口。作为输出口用时,每位能吸收电流的方式驱动8个TTL逻辑门电路,对端口P0 写“1”时,可作为高阻抗输入端用。在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。在Flash 编程时,P0
本科毕业设计说明书(论文)第10页共38 页
口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。 P1 口
P1 是一个带内部上拉电阻的8 位双向I/O 口,P1 的输出缓冲级可驱动(吸收或输出电流)4个TTL 逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。与AT89C51不同之处是,P1.0和P1.1 还可分别作为定时/计数器2的外部计数输入(P1.0/T2)和输入(P1.1/T2EX), P2 口
P2是一个带有内部上拉电阻的8位双向I/O 口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL 逻辑门电路。对端口P2 写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。在访问外部程序存储器或16 位地址的外部数据存储器(例如执行MOVX @DPTR 指令)时,P2 口送出高8 位地址数据。在访问8 位地址的外部数据存储器(如执行MOVX @RI 指令)时,P2 口输出P2 锁存器的内容。Flash编程或校验时,P2亦接收高位地址和一些控制信号。 P3 口
P3口是一组带有内部上拉电阻的8 位双向I/O 口。P3 口输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑门电路。对P3 口写入“1”时,它们被内部上拉电阻拉高并可作为输入端口。此时,被外部拉低的P3 口将用上拉电阻输出电流(IIL)。P3 口除了作为一般的I/O 口线外,更重要的用途是它的第二功能。P3 口还接收一些用于Flash 闪速存储器编程和程序校验的控制信号。 RST
复位输入。当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。 ALE/PROG
当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。一般情况下,ALE仍以时钟振荡频率的1/6 输出固定的脉冲信号,因此它可对外输出时钟或用于定时目的。要注意的是:每当访问外部数据存储器时将跳过一个ALE 脉冲。对Flash 存储器编程期间,该引脚还用于输入编程脉冲(PROG)。如有必要,可通过对特殊功能寄存器(SFR)区中的8EH 单元的D0 位置位,
本科毕业设计说明书(论文)第11页共38 页
可禁止ALE操作。该位置位后,只有一条MOVX 和MOVC指令才能将ALE 激活。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE 禁止位无效。 PSEN
程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当AT89C52由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN 有效,即输出两个脉冲。在此期间,当访问外部数据存储器,将跳过两次PSEN信号。 EA/VPP
外部访问允许。欲使CPU 仅访问外部程序存储器(地址为0000H—FFFFH),EA 端必须保持低电平(接地)。需注意的是:如果加密位LB1被编程,复位时内部会锁存EA端状态。如EA端为高电平(接Vcc端),CPU 则执行内部程序存储器中的指令。Flash 存储器编程时,该引脚加上+12V的编程允许电源Vpp,当然这必须是该器件是使用12V 编程电压Vpp。 XTAL1
振荡器反相放大器的及内部时钟发生器的输入端。 XTAL2
振荡器反相放大器的输出端。
4 具体电路模块设计
4.1热释电红外传感器原理
本设计所用的热释感器就采用这种双探测元的结构。其工作电路原理及设计电路如图6所示, 在VCC电源端利用C1和R2来稳定工作电压,同样输出端也多加了稳压元件稳定信号。当检测到人体移动信号时,电荷信号经过FET放大后,经过C2,R1的稳压后使输出变为高电位,再经过NPN的转化,输出OUT为低电平。
本科毕业设计说明书(论文)第12页共38 页
R2 C1 Q1OUT Y2RS C2 R1Y1 FETR3Q2NPN R4Vcc3vVCC12v 图6 热释电红外传感器原理图
4.2时钟电路的设计
XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。
因为一个机器周期含有6个状态周期,而每个状态周期为2个振荡周期,所以一个机器周期共有12个振荡周期,如果外接石英晶体振荡器的振荡频率为12MHZ,一个振荡周期为1/12us,故而一个机器周期为1us。如图7所示为时钟电路。
C122PfXTAL1CRYSTAL12MHZC222PfXTAL2
图7 时钟电路图
4.3 复位电路的设计
复位方法一般有上电自动复位和外部按键手动复位,单片机在时钟电路工作以后, 在RESET端持续给出2个机器周期的高电平时就可以完成复位操作。例如使用晶振频率为12MHz时,则复位信号持续时间应不小于2us。本设计采用的是外部手动按键复位电路。如图8示为手动按键复位电路。
共分享92篇相关文档