当前位置:首页 > 2020高考数学二轮复习题型汇编《第5讲利用导数证明不等式(2)极值点偏移和拐点偏移》(教师版)
另一方面,由??lnx1?mx1?0,得lnx2?lnx1?m?x2?x1?,
lnx?mx?0?22从而可得,
lnx2?lnx1lnx1?lnx2?.
x2?x1x1?x2?x2?x2?1??ln?lnx2?lnx1??x2?x1???x1?x1.
于是,lnx1?lnx2?x2x2?x1?1x1又0?x1?x2,设t??1?t?lnt,. x2,则t?1.因此,lnx1?lnx2?t?1x1t?1?t?1?lnt?2t?1,t?1.即:当t?1时,有lnt?2要证lnx1?lnx2?2,即证:
2?t?1?.设t?12?t?1?12?t?1??2?t?1??t?1???0, 函数h?t??lnt?,t?1,则h??t???22tt?1t?t?1??t?1?所以,h?t?为?1.???上的增函数.注意到,h?1??0,因此,h?t??h?1??0.
2?t?1?2于是,当t?1时,有lnt?.所以,有lnx1?lnx2?2成立,x1x2?e.
t?1
解法二 变换函数能妙解
2证法2:欲证x1x2?e,需证lnx1?lnx2?2.若f?x?有两个极值点x1,x2,即函数f??x?有两个零点.又f??x??lnx?mx,所以,x1,x2是方程f??x??0的两个不同实根.显然m?0,否则,函数f??x?为单调函数,不符合题意. 由??lnx1?mx1?0?lnx1?lnx2?m?x1?x2?,
lnx?mx?0?22即只需证明m?x1?x2??2即可.即只需证明x1?x2?2. m
2?mx?1??2???1???0,故g?x?在设g?x??f??x??f???x??x??0,??,g??x??x2?mxmm?????????1??1??2???0,?gx?g?0fx?f?x,即,故??????????.
mmm??????由于f???x??211?mx?1??1?,故f??x?在?0,??,?,????. ?m?xx?m??m?设x1?1?2??x2,令x?x1,则f??x2??f??x1??f???x1?, m?m?2m又因为x2,?x1??命题得证.
22?1??1?,???,f??x?在?,????,故有x2??x1,即x1?x2?.原mmmm????解法三 构造函数现实力
证法3:由x1,x2是方程f??x??0的两个不同实根得m?lnxlnx,令g?x??,xxg?x1??g?x2?,由于g??x??1?lnx,因此,g?x?在?1,e??,?e,????. x22?e2?e2设1?x1?e?x2,需证明x1x2?e,只需证明x1?只需证明f?x1??f??,??0,e?,
x2?x2??e2?即f?x2??f??,即f?x2???x2??e2?f???0. ?x2??1?lnx??e2?x2??e2?即h?x??f?x??f???x??1,e??,故h?x?在?1,e??,h??x???0,22xe?x??e2??e2?故h?x??h?e??0,即f?x??f??.令x?x1,则f?x2??f?x1??f??,因为x2,
xx???1?e2e2??e,???,f?x?在?e,????,所以x2?,即x1x2?e2. x1x1解法四 巧引变量(一)
证法4:设t1?lnx1??0,1?,t2?lnx2??1,???,则由??lnx1?mx1?0得
lnx?mx?0?22?t1?met1kekkt12t1?t2k?t?t?0t?,设,则,.欲证x1x2?e,t???e?1212t2kke?1e?1t2?t2?me需证lnx1?lnx2?2.即只需证明t1?t2?2,即
k?1?ek?ek?1?2?k?1?ek??2?ek?1??k?1?ek??2?ek?1??0.设
故g??k?在g?k??k?1?ek??2?ek?1??k?0?,g??k??kek?ek?1,g???k??kek?0,
???,0??,故g??k??g??0??0,故g?k?在???,0??,因此g?k??g?0??0,命题得
证.
解法五 巧引变量(二)
证法5:设t1?lnx1??0,1?,t2?lnx2??1,???,则由??lnx1?mx1?0得
?lnx2?mx2?0?t1?met1t1klnklnkt12t1?t2xx?e?k?0,1,设,则,.欲证,需t?t???e???1212t2t2k?1k?1t2?t2?me证lnx1?lnx2?2,即只需证明t1?t2?2,即
?k?1?lnk?2?lnk?2?k?1??lnk?2?k?1??0k?1k?1k?12,设
2?k?1??k?1??0g?k??lnk?k??0,1??,g??k??,故g?k?在?0,1??,因此?2k?1k?k?1?g?k??g?1??0,命题得证.
2.设a?R,函数f?x??lnx?ax有两个零点x1、x2,且0?x1?x2. (1)求实数a的取值范围; (2)证明:x1?x2?e2.
【解析】(1)f?x??0?a?个交点.g??x??lnxlnx,所以f?x??0有两个零点?y?a与g?x??有两xx1?lnx,由g??x??0可得0?x?e,由g??x??0可得x?e,所以g?x?在2x?0,e?上递增,在?e,+??上递减.又因为当x?0?时,g?x????;当x???时,
1?1?g?x??0?;g?e??,所以实数a的取值范围为?0,?.
e?e?【证明】(2)法1:(化二元为一元)依题意,有lnx1?ax1?0,lnx2?ax2?0,于是
lnx1?lnx2?a?x1?x2?,lnx1?lnx2?a?x1?x2?,所以lnx1?lnx2??lnx1?lnx2??x1?x2?x1?x22?x1?x2?x1?x2
.
x1?x2?e2?lnx1?lnx2?2??lnx1?lnx2??x1?x2??2?lnxx1?x21?lnx2??x?2?1?1?xx?,令t?x1?0,1,则上式等价于lnt?2?t?1?,这是与lnx有关的常?ln1??2??x1x2xt?12?1x2用不等式,证明如下:构造h?t??lnt?22?t?1?t?1,0?t?1,则
?t?1??014h??t????,于是h?t?在?0,1?上递增,于是h?t??h?1??0,命题获证.
t?t?1?2t?t?1?2法2:(化二元为一元)依题意,有
lnx1lnx2lnx1x1lnx1x1,即设??,??t??0,1?,
x1x2lnx2x2lnx2x2则lnx1?ln?tx2??lnt?lnx2?tlnx2,于是lnx2?lnt,因此x1?x2?e2?lnx1?lnx2?2? t?1tlnx2?lnx2?2??t?1?lnt?2?lnt?2?t?1?,下同法1.
t?1t?1法3:(极值点偏移)x1?x2?e2?lnx1?lnx2?2,令t1?lnx1,t2?lnx2,则t1、t2是函数g?t??t?aet的两个零点,且0?t1?t2,该问题不是极值点偏移问题,因为g?t?的极值点不是1,需要把g?t??t?aet改为k?t??t?a,问题才转化为极值点偏移问题. etk??t??1?t,由k??t??0可得t?1,由k??t??0可得t?1,所以k?t?在???,1?上递增,在te?1,???上递减,于是0?t1?1?t2.
共分享92篇相关文档