当前位置:首页 > 2018届高考数学二轮复习专题五专题能力训练15立体几何中的向量方法理
专题能力训练15 立体几何中的向量方法
能力突破训练
1.
如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.
(1)求证:EG∥平面ADF;
(2)求二面角O-EF-C的正弦值;
(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值. 2.
如图,在四棱锥A-EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点. (1)求证:AO⊥BE;
(2)求二面角F-AE-B的余弦值; (3)若BE⊥平面AOC,求a的值.
3.
(2017山东,理17)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是(1)设P是
的中点.
上的一点,且AP⊥BE,求∠CBP的大小;
(2)当AB=3,AD=2时,求二面角E-AG-C的大小.
4.
如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点. (1)求证:B1E⊥AD1;
(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由. 5.
(2017北京,理16)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.
(1)求证:M为PB的中点; (2)求二面角B-PD-A的大小;
(3)求直线MC与平面BDP所成角的正弦值.
6.
如图,AB是半圆O的直径,C是半圆O上除A,B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB,AB=4,tan∠EAB=.
(1)证明:平面ADE⊥平面ACD;
(2)当三棱锥C-ADE体积最大时,求二面角D-AE-B的余弦值.
思维提升训练
7.如图甲所示,BO是梯形ABCD的高,∠BAD=45°,OB=BC=1,OD=3OA,现将梯形ABCD沿OB折起成如图乙所示的四棱锥P-OBCD,使得PC=,E是线段PB上一动点.
共分享92篇相关文档