当前位置:首页 > 《实变函数与泛函分析基础》试卷和答案
令E?k?1*?Ek,则fn(x)在E*上处处收敛到f(x)……………5分
?m(E\\E)?m(E\\k?1*Ek)?m(E\\Ek)?1,k=1,2k
所以m(E\\E*)?0………………………………………………8分 5、证明:设en?E[|f|?n],由于
f(x)在E上a.e.有限,故
men?0,(n??)………………………………………………..2分
由积分的绝对连续性,对任何???0,?N,使
N?meN??|f(x)|dx?eN?4………………………………………4分
令BN?E\\eN,在BN上利用鲁津定理,存在闭集FN?BN和在R1上的连续函数?(x)使(1)
x?R14Nsup|?(x)|?sup|f(x)|?N……………………6分
x?FNm(BN\\FN)??;(2)
x?FN时,f(x)??(x),且
所以
?ba|f(x)??(x)|dx??|f(x)??(x)|dx??|f(x)??(x)|dxeNBNeNeNBN\\FN??|f(x)|dx??|?(x)|dx???|f(x)??(x)|dx??
?4?N?meN?2N??4N??4??4??2……………………...8分
共分享92篇相关文档