当前位置:首页 > 读书报告—光盘存储技术的历史、现状及未来
称光子存储( photo induced optical memory)。它是一种不经过材料吸收光子后产生热效应阶段而形成的光存储,区别于目前一般应用的光热存储方式。主要研究包括光谱烧孔存储和双光子吸收三维存储。
1、光谱烧孔存储
固体机制中的掺杂分子由于局域环境的差异出现能级的非均匀加宽。当用窄频带激光照射后,在掺杂分子吸收带内,在激光频率处出现吸收的减小,这种现象称为光谱烧孔。该烧孔可以用相同频率的激光读出。由于可通过改变激光频率在吸收带内烧出多个孔,即利用频率维变量来记录信息,从而可以在一个光斑存储多个信息。
光谱烧孔包括单光子光谱烧孔和双光子光谱烧孔。两类材料的光子选通烧孔均在低温下进行,由于目前材料的电子俘获陷阱深度较浅,导致烧孔的孔深也较浅,而且在序列烧孔过程中,先烧出的孔容易出现逐渐被填充的现象,因而寻找室温下能烧孔的材料是关键。目前,国内外主要研究两类材料体系:Sm离子掺杂的无机材料体系以及给体和受体电子转移反应的有机材料体系。
2、双光子吸收三维存储
双光子吸收三维记录的基本原理是:两种光子同时作用于某种介质时,能使介质的原子中某一特定能级上的电子激发至另一稳态,并使其光学性能发生变化,若使两个光束从两个方向聚焦至材料的空间同一点时,便可实现三维空间的寻址与读写。利用材料折射率、吸收度、荧光或电性质的改变来实现存储,能实现T bits/cm3的体密度,可达到4MB/s的传输率。国际上最有代表性的是美国加州大学San Diego分校及Call&Recall公司100层的记录方法。国内清华大学从1995年开始从事这方面的研究,初步建立了针对有机介质的记录物理模型并完成了对双光子记录介质特性测试专用设备的研制。
双光子吸收三维存储原理基于能级的跃迁,材料的响应时间可达到皮秒量级,能够实现高密度体存储,理论上的分辨率可达到分子尺度。但由于大多数材料的双光子吸收截面很小限制了其应用,因而要使双光子三维存储走向实用化, 就必须开展对存储材料的研究。 2、多阶光存储技术
多阶光存储是目前国内外光存储研究的重点之一,缘于它可以大大地提高存储容量和数据传输率。在传统的光存储系统中,二元数据序列存储在记录介质中,记录符只有两种不同的物理状态,例如只读光盘中交替变化的坑岸形貌。如将数据流调制成M进制数据(M>2),令调制后的数据与记录介质的M种不同物理状态相对应,即可实现M阶存储。如下图所示的坑深调制多阶存储,就是通过
改变信息符的深度来实现多值存储,数据流经调制转换成盘基多种不同坑深的变化,即可实现多阶坑深存储。多阶光存储分为信号多阶光存储和介质多阶光存储。
1、 信号多阶光存储
其早期方案是坑深调制(PDM:Pit Depth Modulation)。在这种多阶只读光盘中,信息坑的宽度固定为t min,信息坑的深度具有M种不同的可能,代表着不同的阶次。不同深度的信息坑,其读出光呈现不同光强,从而实现多阶坑深调制。Sony公司研发的是利用信息坑边沿相对于固定时钟的变化,进行多阶信息存储,即利用信息坑长度的变化实现多阶光存储。信息坑的起始和结束边沿相对于时钟边沿都可以按一定的步长变化。若信息坑的起始和结束边沿的可能位置数均为 8,那么一个信息坑的边沿变化可能出现64种状态,信息坑可存储6比特(byte)的信息,因此显著高于传统光盘的记录密度。 2、 介质多阶光存储
有多种介质可以用来实现多阶光存储。在电子俘获多阶技术中的光盘的记录层中掺杂有两种稀土元素,当第一种掺杂离子吸收短波长激光的光子后,其电子被激发到高能级状态,该电子可能被第二种掺杂离子“俘获”,实现数据的写入。用另一长波长激光( 例如红光) 将俘获的电子释放到原来的低能级状态,存储 的能量以荧光的形式释放出来,由于发出的荧光强度与俘获的电子数量成比例,同时也与写入激光的强度成比例,该写入/读出过程具有线性响应,使得电子俘获材料适用于数字光存储。电子俘获光存储的反应速度快,可以实现ns时间的读写。
此外,通过调整退火时间和温度,控制相变材料的结晶程度,也可以实现多阶反射调制存储。
3、 近场光学存储技术
传统光驱使用包含物镜的光学头进行写、读、擦操作,由于物镜距盘片记录层多为几个毫米,属于远场光存储方式,光无法聚焦成直径小于半波长的点,存储密度受到了限制。近场光学存储采用的是近场光,它是由记录介质与光源在小于半波长量级 的距离时获得的隐失光。隐失光为非传输光,当距离超过波长量级时迅速衰减到接近于零。近场光学存储的基本原理就是通过亚波长尺寸的光学头和亚波长尺寸的距离控制,实现亚波长尺寸的光点记录。只要将光学存储介质放在近场光学显微镜中,保持光学探针与存储介质的距离在近场范围内,则在存储介质中形成的记录点尺寸就可能在亚波长量级内,从而克服衍射极限,实现高密度存储。与其它超高密度存储方法相比,近场光学存储主要有以下优点:
(1)高密度、大容量:读写光斑小,大大提高了存储的密度,使得存储容量有了很大提高。随着近场光存储技术的进一步完善,还可以获得比较高的数据传输速率;
(2)可充分利用已有存储技术:如硬盘驱动器中的空气悬浮磁头技术和光 盘存储中的光头飞行技术,而不必另外再去进行新的系统设计与开发,因而有助于减低产品的价格,增加竞争优势。
目前建立的已能够进行存取数据操作的实验系统可分为3种:①固体浸没透镜(SIL)近场存储;②超分辨率近场结构(Super-RENS)存储;③探针扫描显微术(PSM)近场存储。这三种方法都是通过不同方法缩小记录光斑来提高存储密度。结构见图3。近场存储的优势明显,有美好的发展前景,但目前仍被如何控制高速旋转的记录盘片表面与近场光学读写头之间始终保持近场范围的问题所困扰。PSM方案空间分辨率高,容易实现微区的物理和化学变化,已能用于超高密度信息的记录、再现和擦出。Super-RENS高密度近场光存储方案提出时间不长,实验结果表明:采用该方案的确可以实现超衍射分辨率高密度数据存储, 只是在载噪比上离产业化还有距离。国内近场的光学的研究主要集中于光学成像、近场光学荧光探测等。北京大学曾使用探针式近场显微镜系统进行了量子阱、量子线、激光器近场光谱和生物样品成像试验,分辨率达到50~100nm,并设计了固体浸没透镜式近场光学超高密度存储系统。
四、光盘存储技术的发展趋势及展望
光盘技术虽然已基本成熟,但仍存在很大的发展空间,远未达到其物理极限。在21世纪,随着光记录相关技术如光学技术、激光技术、微电子技术、材料科
学、微细精加工技术、计算机技术、自动控制技术以及编码技术的进步,光记录在记录密度、存储容量和数据传输速度等方面,都还有更高的需求和巨大的发展潜力。市场需求永远是技术发展和产品开发的根本动力。21世纪是全球高度信息化数字化的世纪,社会运作和经济发展对信息的需求量将是天文数字。数字传输速度将以Tbit/s(1012bit/s)计,相应的数据处理速度也将达到皮秒(10-12s)量级。那么相关的存储技术和产品的也将因市场的推动迅速发展。
以光学、集成光学、光子效应、体全息技术、光感生或磁感生超分辨率等原理为基础的新一代光存储技术将朝着以下几个方向发展 1、实现低价位DVD系列光盘及驱动器的规模生产
直径为120mm的DVD光盘单面容量4.7GB,双面容量9.4GB,如果改成双面双层,容量可达到18GB,组成了标称容量为5GB、9GB、10GB、18GB的DVD-5、DVD-9、DVD-10、DVD-18的光盘系列,只要这种光盘及光盘机的生产成本能降低到当今CD-ROM或CD-R光盘及光盘机的价位,就足够满足一般信息系统及家用电器的需求。由于DVD系列产品仍以传统的光盘制造技术为基础,基本工作原理没有改变,只是将信息符坑点的尺寸从原来的0.83μm降低到0.4μm,信道间距从原来的1.6μm降低到0.74μm。这种光盘机的结构原理也没有太大的变化,所用的半导体激光器的波长略有缩短,一旦形成规模,成本必将大幅度下降。目前,加工这种高密度光盘母盘及盘片注塑的设备及技术都已完全成熟。
2、进一步提高DVD光盘质量、成品率及功能
目前,DVD光盘的成品率,无论是母盘制作还是最终产品的成品率都低于普通CD光盘,从而也影响其生产成本。各种生产光盘的专用加工和测试设备还需要进一步更新,将深紫外超分辨率曝光技术、电子束曝光技术、多层光致抗蚀剂技术、无显影曝光技术、4X或更高速的刻录技术等引入母盘制作,以便进一步提高母盘质量和成品率。DVD光盘及光盘机将在功能上进行改进,首先是多功能化,包括光盘机和盘片的多功能化,即一台光盘机可用于只读、一次写入不可擦除及可直接改写等不同盘片,而盘片也可能做成同时具有只读和可擦写功能。此外随着编码技术和集成电路技术的进步,光盘机的编码及控制软件功能还将进一步改进,将分散的视频、音频、编码、解码、调制、解调、通道控制、伺服控制重新整合成少数芯片甚至单一芯片,不仅能降低成本,还会大大提高系统的可靠性。为了使光盘机使用更方便,其另一改进方向是光盘机的智能,使人机界面
更加简单,操作更为简便。
3、在记录密度不变的条件下提高系统性能
无论是VCD或DVD光盘都可以利用自动换盘系统,组成光盘库、光盘塔、光盘阵列,实现提高整个系统的容量、数据传输率及多数据存储的可靠性。如果将光盘库、光盘塔及光盘阵列与自动换盘系统有机结合,可以大大提高系统容量、数据传输率和显著改善存储数据的可靠性。目前最大的光盘库容量已可达到TB 量级(即1012字节)。
五、总结
作为一种新型信息数据存储,传播媒介光盘以其统一的国际标准支持,巨大的数据存储量以及相对低廉的生产成本等优势已在计算机应用等信息产业中得到了飞速发展和普及,将成为全球“信息高速公路”的主要传播媒体。
共分享92篇相关文档