当前位置:首页 > 2018年中考数学真题分类汇编(第二期)专题6一元一次不等式(组)试题(含解析)
【分析】(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元,根据“1台A型电脑的钱数+2台B型打印机的钱数=5900,2台A型电脑的钱数+2台B型打印机的钱数=9400”列出二元一次方程组,解之可得;
(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据“(a﹣1)台A型电脑的钱数+a台B型打印机的钱数≤20000”列出不等式,解之可得.
【解答】解:(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元, 根据题意,得:
,解得:
,
答:每台A型电脑的价格为3500元,每台B型打印机的价格为1200元;
(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台, 根据题意,得:3500(a﹣1)+1200a≤20000, 解得:a≤5,
答:该学校至多能购买5台B型打印机.
【点评】本题主要考查一元一次不等式与二元一次方程组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程组与不等式. 11.(2018?山东东营市?7分)(2)∵解不等式①得:x>﹣3, 解不等式②得:x≤1
∴不等式组的解集为:﹣3<x≤1, 则﹣1是不等式组的解,
不是不等式组的解.
【点评】本题考查了绝对值、特殊角的三角函数值、零指数幂、负整数指数幂、解一元一次组等知识点,能求出每一部分的值是解(1)的关键,能求出不等式组的解集是解(2)的关键.
12. (2018?上海?10分)解不等式组:
,并把解集在数轴上表示出来.
【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.
【解答】解:
解不等式①得:x>﹣1,
解不等式②得:x≤3,
则不等式组的解集是:﹣1<x≤3,
不等式组的解集在数轴上表示为:
【点评】本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
13. (2018?资阳?8分)为了美化市容市貌,政府决定将城区旁边一块162亩的荒地改建为湿地公园,规划公园分为绿化区和休闲区两部分.
(1)若休闲区面积是绿化区面积的20%,求改建后的绿化区和休闲区各有多少亩? (2)经预算,绿化区的改建费用平均每亩35000元,休闲区的改建费用平均每亩25000元,政府计划投入资金不超过550万元,那么绿化区的面积最多可以达到多少亩?
【分析】(1)设改建后的绿化区面积为x亩.根据总面积为162构建方程即可解决问题; (2)设绿化区的面积为m亩.根据投入资金不超过550万元,根据不等式即可解决问题; 【解答】解:(1)设改建后的绿化区面积为x亩. 由题意:x+20%?x=162, 解得x=135, 162﹣135=27,
答:改建后的绿化区面积为135亩和休闲区面积有27亩.
(2)设绿化区的面积为m亩.
由题意:35000m+25000(162﹣m)≤5500000, 解得m≤145,
答:绿化区的面积最多可以达到145亩.
【点评】本题考查一元一次方程的应用,一元一次不等式的应用等知识,解题的关键是学会设未知数,寻找等量关系,构建方程或不等式解决问题. 14.(2018?湖州?6分)解不等式
≤2,并把它的解表示在数轴上.
【分析】先根据不等式的解法求解不等式,然后把它的解集表示在数轴上. 【解答】解:去分母,得:3x﹣2≤4, 移项,得:3x≤4+2, 合并同类项,得:3x≤6, 系数化为1,得:x≤2,
将不等式的解集表示在数轴上如下:
【点评】本题考查了解一元一次不等式,解答本题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.
15.(2018?金华、丽水?6分)解不等式组:
【解析】【分析】根据解不等式的一般步骤(去分母,去括号,移项,合并同类项,系数化为1),分别求出两个等式的解集,再取两个解集的公共部分即可。 16. (2018?广西桂林?6分)解不等式【答案】x<2,图见解析.
【解析】分析:先去分母,再去括号,移项,合并同类项,把x的系数化为1,并在数轴上表示出来即可.
详解:去分母得,5x-1<3(x+1), 去括号得,5x-1<3x+3, 移项得,5x-3x<3+1, 合并同类项得,2x<4, 把x的系数化为1得,x<2. 在数轴上表示为:
.
点睛:本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键. 17. (2018·黑龙江大庆·7分)某学校计划购买排球、篮球,已知购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元. (1)求购买1个排球、1个篮球的费用分别是多少元?
(2)若该学校计划购买此类排球和篮球共60个,并且篮球的数量不超过排球数量的2倍.求至少需要购买多少个排球?并求出购买排球、篮球总费用的最大值?
【分析】(1)根据购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元列出方程组,解方程组即可;
(2)根据购买排球和篮球共60个,篮球的数量不超过排球数量的2倍列出不等式,解不等式即可.
【解答】解:(1)设每个排球的价格是x元,每个篮球的价格是y元,
,并把它的解集在数轴上表示出来.
根据题意得:解得:
,
,
所以每个排球的价格是60元,每个篮球的价格是120元; (2)设购买排球m个,则购买篮球(60﹣m)个. 根据题意得:60﹣m≤2m, 解得m≥20,
又∵排球的单价小于蓝球的单价, ∴m=20时,购买排球、篮球总费用的最大
购买排球、篮球总费用的最大值=20×60+40×120=6000元.
18.(2018·黑龙江哈尔滨·10分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元. (1)求每个A型放大镜和每个B型放大镜各多少元;
(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?
【分析】(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;
(2)由题意列出不等式求出即可解决问题.
【解答】解:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:解得:
,
,
答:每个A型放大镜和每个B型放大镜分别为20元,12元;
(2)设购买A型放大镜m个,根据题意可得:20a+12×(75﹣a)≤1180, 解得:x≤35,
答:最多可以购买35个A型放大镜.
【点评】本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.
19.(2018?贵州贵阳?10 分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭 赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵 10 元,用 480 元购买乙种树苗的棵数恰好与用 360 元购买甲种树苗的棵数相同. (1)求甲、乙两种树苗每棵的价格各是多少元?
共分享92篇相关文档