云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2015年人教版五年级数学下册知识点归纳总结

2015年人教版五年级数学下册知识点归纳总结

  • 62 次阅读
  • 3 次下载
  • 2025/12/10 21:40:21

2015年人教版五年级数学下册知识点归纳总结

第一单元 观察物体(三)

图形变换的基本方式是平移、对称和旋转。

1、轴对称: 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

(1)学过的轴对称平面图形:长方形、正方形、圆形、等腰三角形、等边三角形、等腰梯形……

等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。 (2)圆有无数条对称轴。

(3)对称点到对称轴的距离相等。 (4)轴对称图形的特征和性质: ①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同。

3、对称图形包括轴对称图形和中心对称图形。平行四边形(除棱形)属于中心对称图形。 2、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化叫做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转要明确绕点,角度和方向。(3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。等边三角形绕中点旋转120度与原来重合。

旋转的性质:

(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有改变;(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;(5)旋转中心是唯一不动的点。

3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数。 第二单元 因数和倍数

1、整除:被除数、除数和商都是自然数,并且没有余数。 整数与自然数的关系:整数包括自然数。最小的自然数是0

2、因数、倍数:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。例:12÷2=6, 12是6的倍数,6是12的因数。为了方便,在研究因数和倍数时,我们所说的数是自然数(一般不包括0)。

数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。

一个数的最大因数=最小倍数=它本身 3、 2、3、5的倍数特征 (1)奇数和偶数的意义:

在自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。 ①自然数按能不能被2整除来分:奇数、偶数。

奇数:不能被2整除的数,叫奇数。也就是个位上是1、3、5、7、9的数。 偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。 ②最小的奇数是1,最小的偶数是0。 ③奇数、偶数的运算性质:

奇数±奇数=偶数 偶数±偶数=偶数 奇数±偶数=奇数(大减小) 奇数×奇数=奇数 奇数×偶数=偶数 偶数×偶数=偶数

1

(2)数的整除特征 整除数 特征 2 末尾是0,2,4,6,8 3或9 各数位上数的和是3或9的倍数 5 末尾是0或5 2和5 个位上的数是0 2、3和5 是30的倍数的数 (最大的两位数是90,最小的三位数是120) 4或25 末两位数所组成的数是4或25的倍数 8或125 末三位数所组成的数是8或125的倍数 7、11、13 末三位与前几位数的差(大减小)是7或11或13的倍数 例题:1、从0、4、5、8、9中取出三个数字组成三位数, ①在能被2整除的数中,最大的是( 984 ),最小的是( 450 ) ②在能被3整除的数中,最大的是( 984 ),最小的是( 405 ) ③在能被5整除的数中,最大的是( 980 ),最小的是( 405 )

在四位数21□0的方框中填入一个数,使它能同时被2、3、5整除,最多能( 4 )种填法。

4、质数和合数

①质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质素和(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

②自然数按因数的个数来分:质数、合数、1、0四类. 质数(或素数):只有1和它本身两个因数。

合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。 1: 只有1个因数。“1”既不是质数,也不是合数。 0:

最小的质数是2,最小的合数是4,连续的两个质数是2、3。 所有的奇数都是质数。( × ) 所有的偶数都是合数( × ) 在1,2,3……自然数中,除了质数以外都是合数。( × ) 两个质数的和是偶数。( × )

③质数×质数=合数 每个合数都可以由几个质数相乘得到,质数相乘一定得合数。 ④20以内的质数:有8个(2、3、5、7、11、13、17、19)

100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97

100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。

5、最大、最小

A的最小因数是:1; 最小的奇数是:1; A的最大因数是:A; 最小的偶数是:0; A的最小倍数是:A; 最小的质数是:2; 最小的自然数是:0; 最小的合数是:4 猜电话号码0592-A B C D E F G

提示:A——5的最小倍数 B——最小的自然数 C——5的最大因数 D——它既是

4的倍数,又是4的因数 E——它的所有因数是1,2,3,6 F——它的所有因数是1, 3 G——它只有一个因数,这个号码就是 0592--5054631 附:判断

2

(1)因为7×8=56,所以56是倍数,7和8是因数 ( × ) (2)1是1,2,3,4,5… 的因数( √ )

(3)14比12大,所以14的因数比12的因数多( × ) (4)因为1.2÷0.6=2,所以1.2是0.6倍数. ( × )

因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。 例:12是6的倍数,6是12的因数。

(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。

(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。 一个数的因数的求法:成对地按顺序找。

(3)一个数的倍数的个数是无限的,最小的倍数是它本身。 一个数的倍数的求法:依次乘以自然数。 (4)2、3、5的倍数特征

(1) 个位上是0,2,4,6,8的数都是2的倍数。 (2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。 ..(3)个位上是0或5的数,是5的倍数。

(4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120,最大的三位数是990

同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。

(5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。 完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。 如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等。

自然数按因数的个数来分:质数、合数、1、0四类.

每个合数都可以由几个质数相乘得到,质数相乘一定得合数。 关系: 奇数×奇数=奇数 质数×质数=合数 分解质因数:把一个合数分解成多个质数相乘的形式。 用短除法分解质因数 (一个合数写成几个质数相乘的形式)。 ...比如:30分解质因数是:(30=2×3×5)

互质数:公因数只有1的两个数,叫做互质数。 两个质数的互质数:5和7 两个合数的互质数:8和9 一质一合的互质数:7和8 两数互质的特殊情况:

1和任何自然数互质;⑵相邻两个自然数互质; ⑶两个质数一定互质; ⑷2和所有奇数互质; ⑸质数与比它小的合数互质。 公因数、最大公因数

几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。

用短除法求两个数或三个数的最大公因数 (除到互质为止,把所有的除数连乘起来) 几个数的公因数只有1,就说这几个数互质。

如果两数是倍数关系时,那么较小的数就是它们的最大公因数。 如果两数互质时,那么1就是它们的最大公因数。 公倍数、最小公倍数

几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)

3

用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来) 如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。 如果两数互质时,那么它们的积就是它们的最小公倍数。 求最大公因数和最小公倍数方法 用12和16来举例 求法一:(列举求同法) 最大公因数的求法:

12的因数有:1、12、2、6、3、4 16的因数有:1、16、2、8、4 最大公因数是4

最小公倍数的求法:

12的倍数有:12、24、36、48、… 16的倍数有:16、32、48、… 最小公倍数是48 求法二:(分解质因数法) 12=2×2×3 16=2×2×2×2

最大公因数是:2×2=4 (相同乘)

最小公倍数是:2×2 × 3×2×2= 48 (相同乘× 不同乘)

第三单元 长方体和正方体

1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。 长方体特点:

(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。 (2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。 2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。 正方体特点:

(1)正方体有12条棱,它们的长度都相等。

(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。 不同点 相同点 面 棱 长方体 都有6个面, 6个面都是长方形。 相对的棱的长度都相等 12条棱, (有可能有两个相对的面是正方形)。 8个顶点。 6个面都是正方形。 正方体 12条棱都相等。 3、长方体、正方体有关棱长计算公式: 长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4 L=(a+b+h)×4 长=棱长总和÷4-宽 -高 a=L÷4-b-h 宽=棱长总和÷4-长 -高 b=L÷4-a-h 高=棱长总和÷4-长 -宽 h=L÷4-a-b

正方体的棱长总和=棱长×12 L=a×12 正方体的棱长=棱长总和÷12 a=L÷12

4、长方体或正方体6个面和总面积叫做它的表面积。

4

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

2015年人教版五年级数学下册知识点归纳总结 第一单元 观察物体(三) 图形变换的基本方式是平移、对称和旋转。 1、轴对称: 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。 (1)学过的轴对称平面图形:长方形、正方形、圆形、等腰三角形、等边三角形、等腰梯形…… 等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。 (2)圆有无数条对称轴。 (3)对称点到对称轴的距离相等。 (4)轴对称图形的特征和性质: ①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同。 3、对称图形包括轴对称图形和中心对称图形。平

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com