云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 专题4.1 立体几何-2020年全国高考数学考前复习大串讲

专题4.1 立体几何-2020年全国高考数学考前复习大串讲

  • 62 次阅读
  • 3 次下载
  • 2025/12/3 1:47:55

(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC; (II)已知EF=FB=

1AC=23,AB=BC.求二面角F?BC?A的余弦值. 2

【答案】(Ⅰ)见解析;(Ⅱ)7 【解析】 7

试题解析:

由题意得B(0,23,0),C(?23,0,0),过点F作FM垂直OB于点M, 所以FM?FB2?BM2?3, 可得F(0,3,3)

故BC?(?23,?23,0),BF?(0,?3,3). 设m?(x,y,z)是平面BCF的一个法向量.

??3?m?BC?0??23x?23y?0由?, 可得?,可得平面BCF的一个法向量m?(?1,1,),

3???m?BF?0??3y?3z?0因为平面ABC的一个法向量n?(0,0,1),所以cos?m,n??m?n7. ?|m||n|7所以二面角F?BC?A的余弦值为7. 7

从而FN?

欢迎访问“高中试卷网”——http://sj.fjjy.org 7427.所以二面角F?BC?A的余弦值为,可得cos?FNM?. 727

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC; (II)已知EF=FB=1AC=23,AB=BC.求二面角F?BC?A的余弦值. 2 【答案】(Ⅰ)见解析;(Ⅱ)7 【解析】 7 试题解析: 由题意得B(0,23,0),C(?23,0,0),过点F作FM垂直OB于点M, 所以FM?FB2?BM2?3, 可得F(0,3,3) 故BC?(?23,?23,0),BF?(0,?3,3). 设m?(x,y,z)是平面BCF的一个法向量. ??3?m?BC?0??23x?23y?0由?, 可得?,可得平面BCF的一个法向量m?(?1,1,), 3???m?BF?0??3y?3z?0因为平面ABC的一个法向

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com