云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 组串式与集中式光伏电站安全对比 - 图文

组串式与集中式光伏电站安全对比 - 图文

  • 62 次阅读
  • 3 次下载
  • 2025/12/4 11:11:45

因为在过载情况下,尤其是小电流过载,熔断器的熔断将变得很慢,在这种“将断未断”情况下,熔断器将处于一个非常高温的热平衡状态。

图13 熔断器的熔断时间和电流特性曲线 光伏熔断器的熔体主要是银,银的熔点高达961℃,为了使熔断器在较低温度时也能够熔断,在银上增加了一个焊锡点,该焊锡的熔点一般在260℃以上。 熔断器的熔断过程是当温度达到熔断器的熔点时,熔断器开始熔化并继续吸收热量进一步熔化变成液态,随后熔断器温度进一步升高直到汽化,熔断器汽化形成断点,开始产生拉弧,拉弧拉到一定距离后熄灭,熔断器熔断。所以在“将断未断”情况下,熔断器的温度可能高达500℃。这么高的温度将破坏线缆和熔断器盒的绝缘,最终引发着火事故。

图14 熔断器发热使熔断器盒烧毁

另外,部分熔断器在熔断时会出现喷弧现象,电弧温度非常高,会使相邻的塑料元件、线缆绝缘等着火。

图15 熔断器熔断时喷弧烧毁相邻元件

小结:集中式方案因使用熔断器增加了直流节点,现场可能发生接线不良而引发的烧毁事故;集中式方案使用熔断器保护组件,但因熔断器和组件之间存在匹配空挡,并不能有效地保护组件;而且在过载电流情况下,熔断器还会因熔断慢,发热高,容易引发着火风险,

成为光伏电站安全的重大隐患。国内部分组串式厂家因为采用超过两路组串并联设计,必须外置熔丝保护,因此也存在着熔断器的安全和维护问题。

而主流组串式方案,采用无熔丝的设计方案,不仅从源头解决了组件和线缆的保护问题,而且彻底杜绝了熔断器安全隐患。

2.4 集中式交流断路器代替直流断路器使用风险分析

在前文已经分析了高压直流灭弧难的问题,所以1000Vdc的直流断路器在设计上存在一定的难度,目前市场也只有少数厂家能够生产,使得直流断路器的价格也高出交流断路器近2倍。近几年,光伏行业走过了初期的美好发展,进入了“价格战”的阶段,部分厂家为了降低成本,直接将交流断路器代替直流断路器使用,但未对灭弧系统进行有效变更设计。当出现故障时,交流断路器无法将高压直流电弧熄灭,将引发着火事故。

图16 在直流故障时交流断路器的灭弧室被烧穿

小结:集中式方案若直接使用交流断路器代替直流断路器使用,存在着火风险。而组串式变直流输电为交流输电,本身设计选用的就是成熟可靠的交流断路器,风险较低。

2.5 组串式与集中式防护安全对比

主流的组串式方案采用自然散热,IP65的防护等级,防沙尘,抗盐雾,全密闭的设计保障逆变器25年的安全运行。

集中式方案采用风扇散热,IP20设计,防护等级低,无法隔离沙尘和盐雾。因此,集中式电站在运行一段时间后,由于环境原因会使其逆变房、逆变器和直流汇流箱内都积满了沙尘,需要定期对防尘棉、通风系统进行维护。积尘会堵塞防尘网、降低通风系统的效率,使设备散热性能变差,大功耗器件温度急剧上升,严重时将引发着火事故。 在沙尘中经常会含有部分的金属颗粒,金属颗粒落在电路板上,会降低电路板上的安规间距,造成放电打火。同时,因湿度增加,湿尘中的酸根和金属离子活性增强,呈现一定酸性或碱性,对PCB的铜、焊锡、器件端点形成腐蚀效应,引起设备工作异常。在沿海等高盐雾地区,腐蚀失效现象更加显著。

图17 集中式逆变房内积尘

图18 集中式逆变器内部积尘

图19 集中式直流汇流箱锈蚀、积尘

小结:集中式逆变器IP20防护等级,不可避免受到沙尘影响,会引起开关接触不良,风扇失效散热变差,电路板打火等现象,存在着火风险。而组串式逆变器IP65防护等级,完全隔离沙尘,可靠性及安全性较高。

2.6 组串式逆变器和集中式逆变器防PID安全对比

我国东部地区,人口密度高,土地资源稀缺,无法和西部地区一样发展大型地面光伏电站,结合东部地区鱼塘,滩涂多的特点。出现很多渔光互补或滩涂光伏电站,此类电站环境湿度大,电池组件更容易出现PID衰减,为此,必须增加防PID措施。

集中式逆变器为防止PID问题,一般采取负极接地的方案,这样在电池组件正极与接地系统之间会形成高压。通常熔断器选型在5A以上,人若不小心触碰到电池组件正极,可能造成人身伤亡事故。同时若组件正极或电缆产生接地故障,会通过接地线产生故障电流或产生电弧放电,引发着火事故。

组串式逆变器为防止PID问题,通过在系统中设置虚拟正压电路,实现所有电池板负极对地正电压,安全规避PID效应。由于电池板负极无需接地,加上逆变器内部的残余电流监测电路,能够在检测到漏电流大于30mA的情况下,迅速切断电路,实现了保护人身安全。

小结:集中式采用负极接地防止PID,存在人身安全和着火两大隐患。组串式采用虚拟正压防止PID,无需负极接地,不存在人身安全和着火隐患。

3 总结

综上所述,集中式方案在直流输电、熔断器、断路器、防护等级、防PID效应等方面存在着火和人身安全隐患。而组串式方案变直流输电为交流输电,采用无熔断器,自然散热,IP65防护等级,虚拟正压防止PID,从根本上解决了集中式的着火隐患。

光伏电站安全问题已上升为中国能源战略的大问题。在去年8月份举行的在大型光伏电站高效可靠运营与发电增效研讨会上,国家发改委能源研究所研究员王斯成就表示,“在走访西部大量电站后发现,很多电站在运行一段时间后出现了大量的安全问题,而电站质量直接影响到电站的收益,这也是为什么目前银行对投资电站有顾虑的主要原因之一。”

在安全方面的对比上,组串式拥有绝对优势。特别是在山地、屋顶等电站中,一旦发生着火事故,可能引发山林火灾。而在农光、渔光等电站中,经常有非电站专业人员出入耕种,一旦发生人员触电伤亡事故,影响更是难以估量。建议业主在进行光伏电站的建设及方案设计时更需要着重考虑安全问题。

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

因为在过载情况下,尤其是小电流过载,熔断器的熔断将变得很慢,在这种“将断未断”情况下,熔断器将处于一个非常高温的热平衡状态。 图13 熔断器的熔断时间和电流特性曲线 光伏熔断器的熔体主要是银,银的熔点高达961℃,为了使熔断器在较低温度时也能够熔断,在银上增加了一个焊锡点,该焊锡的熔点一般在260℃以上。 熔断器的熔断过程是当温度达到熔断器的熔点时,熔断器开始熔化并继续吸收热量进一步熔化变成液态,随后熔断器温度进一步升高直到汽化,熔断器汽化形成断点,开始产生拉弧,拉弧拉到一定距离后熄灭,熔断器熔断。所以在“将断未断”情况下,熔断器的温度可能高达500℃。这么高的温度将破坏线缆和熔断器盒的绝缘,最终引发着火事故。 图14 熔断器发热使熔断器盒烧毁 另外,部分熔断器在熔断时会出现喷弧现象,电弧温度非常高,会使相邻的

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com