当前位置:首页 > 高考数学试题分类汇编数列
(21)(本小题12分) 解:(I)因a1,a2009,a2008由 S200?9S2008,???,00a16是公比为d的等比数列,从而a2000?a1d,a2008?a1d2
?12a得1a?12220a08?0,故0a
解得d?3或d??4(舍去)。因此d?3 又 S3?3a1?3d?15。解得a1?2 从而当n?1005时,
an?a1)d?2?3(n?1)?n3 ?11?(n? 当1006?n?2009时,由a1,a2009,a2008,???,a1006是公比为d的等比数列得
an?a1d2009?(n?1)?a1d2010?n(1006?n?2009)
因此an???3n?1,n?1005?2?32009?n,1006?n?2009
22222222(II)由题意an?an?1an?1(1?n?m),am?am?1a1,a1?ama2得
① ?an?an?1an?1(1?n?m),??am?am?1a1 ② ?a?aa ③m2?1有①得a3?a2a11,a4?,a5?,a6?1 ④ a3a1a2a2由①,②,③得a1a2???an?(a1a2???an)2, 故a1a2???an?1. ⑤ 又ar?3?ar?2ar?111???(1?r?m?3),故有 ar?1arar?1arar?6?1?ar(1?r?m?6).⑥ ar?3下面反证法证明:m?6k
1?p?5 若不然,设m?6k?p,其中若取p?1即m?6k?1,则由⑥得am?a6k?1?a1,而由③得am?a1a,故a1?1, a2a2得a2?1,由②得am?1?am,从而a6?a6k?am?1,而 a1a6?a1,故a1?a2?1,由④及⑥可推得an?1(1?n?m)与题设矛盾 a2同理若P=2,3,4,5均可得an?1(1?n?m)与题设矛盾,因此m?6k为6的倍数 由均值不等式得
a1?a2?a3?K?a6?(a1?aa11)?(a2?)?(2?1)?6 a1a2a1a2由上面三组数内必有一组不相等(否则a1?a2?a3?1,从而a4?a5?K?am?1与题设矛盾),故等号不成立,从而a1?a2?a3?K?a6?6 又m?6k,由④和⑥得
222222a7?K?am?(a7?K?a12)?K?(a6k?5?K?a6k)2 =(k-1) (a12?K?a6)
=(k-1) (a12?因此由⑤得
11122+a?+a?)?6(k-1)2322a12a2a322a1?a2?a3?K?a6?a7?K?am?6?6(k?1)?6k?m?ma1a2a3Kam
33.(2009重庆卷文)(本小题满分12分,(Ⅰ)问3分,(Ⅱ)问4分,(Ⅲ)问5分)
已知a1?1,a2?4,an?2?4an?1?an,bn?(Ⅰ)求b1,b2,b3的值;
(Ⅱ)设cn?bnbn?1,Sn为数列?cn?的前n项和,求证:Sn?17n; (Ⅲ)求证:b2n?bn?解:(Ⅰ)
an?1,n?N?. an11. n?264171772,b3? 417a2?4,a3?17,a4?72,所以b1?4.b2?(Ⅱ)由an?2?4an?1?an得
an?2a1?4?n即bn?1?4? an?1an?1bn所以当n≥2时,bn?4于是c1?b1,b2?17,cn?bnbn?1?4bn?1?17(n≥2)
所以Sn?c1?c2??cn?17n
117?成立 464(Ⅲ)当n?1时,结论b2?b1?当n≥2时,有bn?1?bn?|4?b?b111?4?|?|nn?1|≤|bn?bn?1| bnbn?1bnbn?117(n≥2)
≤1|bn?1?bn?2|≤172≤111|b?b|?2117n?16417n?2所以 b2n?bn≤b?n1?bn?b?n2?b?n1??2bn?2b? n11?1n?11n()?()?4?1717?11()n?1(1?n)1?11717?11(n?N*) ?()2n?2??n?21176417?41?17
共分享92篇相关文档