云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2016-2017学年江苏省扬州市高三(上)期末数学试卷及答案

2016-2017学年江苏省扬州市高三(上)期末数学试卷及答案

  • 62 次阅读
  • 3 次下载
  • 2025/12/9 3:10:17

令q′(x)>0,解得:0<x<令q′(x)<0,解得:x>故q(x)max=q(∴e?

)=e2, ,

故命题得证.

21.已知a,b∈R,若点M(1,2)在矩阵A=(2,﹣7),求矩阵A的特征值. 【考点】特征值与特征向量的计算.

【分析】先求出矩阵A,再利用矩阵A的特征多项式f(λ)=(λ﹣5)=0,求矩阵A的特征值. 【解答】解:由题意得∴A=

=(λ﹣3)(λ﹣5),

=

,∴

,∴a=4,b=1,

=(λ﹣3)

对应的变换作用下得到点N

∴矩阵A的特征多项式f(λ)=由f(λ)=0,可得λ=3或5.

22.在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),

以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为θ=

,试求直线l与曲线C的交点的直角坐标.

【考点】参数方程化成普通方程.

【分析】将两方程化为普通方程,联立,即可求出直线l与曲线C的交点的直角坐标.

【解答】解:直线l的极坐标方程为θ=方程为

,直角坐标方程为y=x,曲线C的参数

(α为参数),普通方程为y=2﹣x2(﹣1≤x≤1),

联立方程可得x2+x﹣2=0,∴x=1或x=﹣2(舍去), ∴直线l与曲线C的交点的直角坐标为(1,1).

23.为了提高学生学习数学的兴趣,某校决定在每周的同一时间开设《数学史》、《生活中的数学》、《数学与哲学》、《数学建模》四门校本选修课程,甲、乙、丙三位同学每人均在四门校本课程中随机选一门进行学习,假设三人选择课程时互不影响,且每一课程都是等可能的.

(1)求甲、乙、丙三人选择的课程互不相同的概率;

(2)设X为甲、乙、丙三人中选修《数学史》的人数,求X的分布列和数学期望E(X).

【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.

【分析】(Ⅰ)根据分步计数原理总事件数是43,满足条件的事件数是A43,利用古典概率计算公式即可得出.

1,2,3.P(Ⅱ)设X为甲、乙、丙三人中选修《数学史》的人数,则X=0,(ξ=0)=

;P(ξ=1)=

;P(ξ=2)=

;P(ξ=3)=

,即可得出.

【解答】解:(Ⅰ)根据分步计数原理总事件数是43,满足条件的事件数是A43,

∴3个学生选择了3门不同的选修课的概率:P1==

(Ⅱ)设X为甲、乙、丙三人中选修《数学史》的人数,则X=0,1,2,3. P(X=0)=

=

P(X=1)==;

P(X=2)=P(X=3)=

=

=.

∴X的分布列为:

X P ∴期望Eξ=0×

+1×

0 1 2 3 ++3×=.

24.已知Fn(x)=(﹣1)0Cn0f0(x)+(﹣1)1Cn1fi(x)+…+(﹣1)nCnnfn(x),(n∈N*)(x>0),其中,fi(x)(i∈{0,1,2,…,n})是关于x的函数. (1)若fi(x)=xi(i∈N),求关于F2(1),F2017(2)的值; (2)若fi(x)=

(i∈N),求证:Fn(x)=

(n∈N*).

【考点】函数的值.

【分析】(1)由fi(x)=xi(i∈N),求出Fn(x)=(1﹣x)n,由此能求出F2(1)和F2017(2). (2)由fi(x)=

(i∈N),知Fn(x)=

,(n∈N*),由此利

(n∈N*).

用数学归纳法能证明Fn(x)=

【解答】解:(1)∵fi(x)=xi(i∈N),

∴Fn(x)=(﹣1)0Cn0x0+(﹣1)1Cn1x1+…+(﹣1)nCnnxn=(1﹣x)n, ∴F2(1)=(1﹣1)2=0, F2017(2)=(1﹣2)2017=﹣1. 证明:(2)∵fi(x)=

(i∈N),

0011nn

=Cnf(CnfCnf(=∴F((﹣1)+(﹣1)(+…+(﹣1)nx)0x)ix)nx)

(n∈N*),

①当n=1时,Fn(x)=

=1﹣

=

,∴n=1时,结论成立;

②假设n=k时,结论成立,即Fk(x)=

=,

则当n=k+1时,Fk+1(x)=

=1++(﹣1)

=+

=

=

=

=====

∴n=k+1时,结论也成立. 结合①②知Fn(x)=

(n∈N*).

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

令q′(x)>0,解得:0<x<令q′(x)<0,解得:x>故q(x)max=q(∴e?>, , )=e2, , 故命题得证. 21.已知a,b∈R,若点M(1,2)在矩阵A=(2,﹣7),求矩阵A的特征值. 【考点】特征值与特征向量的计算. 【分析】先求出矩阵A,再利用矩阵A的特征多项式f(λ)=(λ﹣5)=0,求矩阵A的特征值. 【解答】解:由题意得∴A=, =(λ﹣3)(λ﹣5), =,∴,∴a=4,b=1, =(λ﹣3)对应的变换作用下得到点N∴矩阵A的特征多项式f(λ)=由f(λ)=0,可得λ=3或5. 22.在平面直角坐标系xOy中,曲线C的参

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com