云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > matlab拟合工具箱cftool及其统计指标公式计算

matlab拟合工具箱cftool及其统计指标公式计算

  • 62 次阅读
  • 3 次下载
  • 2025/12/10 10:10:22

matlab拟合工具箱cftool及其统计指标公式计算

在matlab命令窗口》cftool回车

3、进入曲线拟合工具箱界面“Curve Fitting tool” (1)利用X data和Y data的下拉菜单读入数据x,y,

(2)然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有:

Custom Equations:用户自定义的函数类型

Exponential:指数逼近,有2种类型, a*exp(b*x) 、 a*exp(b*x) + c*exp(d*x) Fourier:傅立叶逼近,有7种类型,基础型是 a0 + a1*cos(x*w) + b1*sin(x*w) Gaussian:高斯逼近,有8种类型,基础型是 a1*exp(-((x-b1)/c1)^2)

Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-preserving Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~ Power:幂逼近,有2种类型,a*x^b 、a*x^b + c

Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型 Smoothing Spline:平滑逼近

Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是 a1*sin(b1*x + c1) Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)

选择好所需的拟合曲线类型及其子类型,并进行相关设置:

——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改待估计参数的上下限等参数;

——如果选Custom Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear Equations线性等式”和“General Equations构造等式”两种标签。

在本例中选Custom Equations,点击“New”按钮,选择“General Equations”标签,输入函数类型y=a*x*x + b*x,设置参数a、b的上下限,然后点击OK。

(5)类型设置完成后,点击“Apply”按钮,就可以在Results框中得到拟合结果:

SSE: 6.146 R-square: 0.997 Adjusted R-square: 0.997 RMSE: 0.8263

同时,也会在工具箱窗口中显示拟合曲线。

这样,就完成一次曲线拟合啦,十分方便快捷。当然,如果你觉得拟合效果不好,还可以在“ Fitting”窗口点击“New fit”按钮,按照步骤(4)~(5)进行一次新的拟合。

不过,需要注意的是,cftool 工具箱只能进行单个变量的曲线拟合,即待拟合的公式中,变 量只能有一个。 注:统计特征

SSE(和方差、误差平方和):The sum of squares due to error

MSE(均方差、方差):Mean squared error RMSE(均方根、标准差):Root mean squared error R-square(确定系数):Coefficient of determination

Adjusted R-square:Degree-of-freedom adjusted coefficient of determination

一、SSE(和方差)

该统计参数计算的是拟合数据和原始数据对应点的误差的平方和,计算公式如下

SSE越接近于0,说明模型选择和拟合更好,数据预测也越成功。接下来的MSE和RMSE因为和SSE是同出一宗,所以效果一样 二、MSE(均方差)

该统计参数是预测数据和原始数据对应点误差的平方和的均值,也就是SSE/n,和SSE没有太大的区别,计算公式如下

三、RMSE(均方根)

该统计参数,也叫回归系统的拟合标准差,是MSE的平方根,就算公式如下

在这之前,我们所有的误差参数都是基于预测值(y_hat)和原始值(y)之间的误差(即点对点)。从

下面开始是所有的误差都是相对原始数据平均值(y_ba)而展开的(即点对全)!!!

四、R-square(确定系数)

在讲确定系数之前,我们需要介绍另外两个参数SSR和SST,因为确定系数就是由它们两个决定的

(1)SSR:Sum of squares of the regression,即预测数据与原始数据均值之差的平方和,公式如下

(2)SST:Total sum of squares,即原始数据和其均值之差的平方和,公式如下

细心的网友会发现,SST=SSE+SSR,呵呵只是一个有趣的问题。而我们的“确定系数”是定义

为SSR和SST的比值,故

其实“确定系数”是通过数据的变化来表征一个拟合的好坏。由上面的表达式可以知道“确定系数”的正常取值范围为[0 1],越接近1,表明方程的变量对y的解释能力越强,这个模型对数据拟合的也较好

相关系数(相关系数r的值介于–1与+1之间,即–1≤r≤+1。其性质如下:当r>0时,表示

两变量正相关,r<0时,两变量为负相关。当|r|=1时,表示两变量为完全线性相关,即为函数关系。当r=0时,表示两变量间无线性相关关系。当0<|r|<1时,表示两变量存在一定程度的线性相关。且|r|越接近1,两变量间线性关系越密切;|r|越接近于0,表示两变量的线性相关越弱。一般可按三级划分:|r|<0.4为低度线性相关;0.4≤|r|<0.7为显著性相关;0.7≤|r|<1为高度线性相关。);

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

matlab拟合工具箱cftool及其统计指标公式计算 在matlab命令窗口》cftool回车 3、进入曲线拟合工具箱界面“Curve Fitting tool” (1)利用X data和Y data的下拉菜单读入数据x,y, (2)然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有: Custom Equations:用户自定义的函数类型 Exponential:指数逼近,有2种类型, a*exp(b*x) 、 a*exp(b*x) + c*exp(d*x) Fourier:傅立叶逼近,有7种类型,基础型是 a0 + a1*cos(x*w) + b1*sin(x*w) Gaussian:高斯逼近,有8种类型,基础型是 a1*exp(-((x-b1)/c1

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com