当前位置:首页 > 2017年北京高考文科数学试题及答案解析
又?BD?平面PAC且BD?平面BDE
?平面BDE?平面PAC
(III)由题知PA//平面BDE
?PA?平面PAC,平面PAC?平面BDE?DE
?PA//DE
?PA?平面ABC?DE?平面ABC
又?D为AC中点 ?E为PC中点
1PA?1,AC?AB2?BC2?22 21AC?2 2?DE? 在?ABC中,DC??BC?BA且?ABC?90?
??ACB?45?
?DB?DC?2 1?S?BCD??DB?DC?1
2
11?VE?BCD??S?BCD?DE?
33
13
19.(本小题14分)
已知椭圆C的两个顶点分别为A??2,0?,B?2,0?,焦点在x轴上,离心率为
3. 2(Ⅰ)求椭圆C的方程;
(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点
M,N,过D作AM的垂线交BN于点E.求证:?BDE与?BDN的面
积之比为4:5.
【解析】(Ⅰ)?焦点在x轴上且顶点为??2,0?
?a?2
?e?c3 ?a2?c?3 ?a2?b2?c2 ?b2?a2?c2?1
x2?椭圆的方程为:?y2?1
4
(Ⅱ)设D?x0,0?且?2?x0?2,yM?y0,则
M?x0,y0?,N?x0,?y0?
?kAM?y0 x0?2?AM?DE
?kAM?kDE??1
?kDE??2?x0 y014
?直线DE:y???kBN??y0 x0?22?x0(x?x0) y0?直线BN:y??y0?x?2? x0?22?x0?y??(x?x0)?y0??y0y??(x?2) ?由x?20??x22?0?y0?1?4得
24??4E?x0?,?y0?55??51?S?BDE?BD?|yE|21S?BDN?BD?yN2 1BD?yES?BDE2??S?BDN1BD?yN24?y045???y05?得证
15
20.(本小题13分)
已知函数f(x)?excosx?x.
(I)求曲线y?f(x)在点(0,f(0))处的切线方程; (II)求函数f(x)在区间?0,?上的最大值和最小值.
?2?【解析】
(I)f(x)?excosx?x
f'(x)?excosx?exsinx?1
???
?f'(0)?e0cos0?e0sin0?1?0
又?f(0)?e0cos0?0=1
?y?f(x)在点(0,f(0))处的切线方程为y?1
???x?(II)令g(x)?f'(x)?ecosx?esinx?1,?0,? ?2?xxg'(x)?excosx?exsinx?(excosx?exsinx)??2exsinx
????x??0,?
?2??sinx?0
而ex?0
?g'(x)?0
???
?g(x)在区间?0,?上单调递减
?2?
?g(x)?g(0)?0 ?f'(x)?0
???
?f(x)在区间?0,?上单调递减
?2?
16
?当x??2时,f(x)有最小值f()?e2cos???
2222????? 当x?0时,f(x)有最大值f(0)?e0cos0?0?1
17
共分享92篇相关文档