云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 高考数学二轮复习 专题9 思想方法专题 第一讲 函数与方程思想 理

高考数学二轮复习 专题9 思想方法专题 第一讲 函数与方程思想 理

  • 62 次阅读
  • 3 次下载
  • 2025/12/11 11:21:43

12.直线m:y=kx+1和双曲线x2-y2=1的左支交于A,B两点,直线l过点P(-2,0)和线段AB的中点M,求l在y轴上的截距b的取值范围.

?y=kx+1,?

解析:由?2(x≤-1)消去y, 2

?x-y=1?

得(k-1)x+2kx+2=0.①

因为直线m与双曲线的左支有两个交点,所以方程①有两个不相等的负实数根.

22

?2k?x+x=<0,

1-k所以?

-2

x·x=>0,??1-k

1

2

2

1

2

2

1

0

0

0

0

0

Δ=4k+8(1-k)>0,

解得1<k<2.

22

x+xk

x==,??21-k

设M(x,y),则?

1

??y=kx+1=1-k.

2

22

由P(-2,0),M?

2

2?k2,12?,Q(0,b)三点共线,得出b=

, ?2-2k+k+2?1-k1-k?

2

?1?17

设f(k)=-2k+k+2=-2?k-?+,

8?4?

则f(k)在(1,2)上为减函数, ∴f(2)<f(k)<f(1),且f(k)≠0. ∴-(2-2)<f(k)<0或0<f(k)<1. ∴b<-2-2或b>2.

∴b的取值范围是(-∞,-2-2)∪(2,+∞).

13.若关于x的方程4+a·2+a+1=0有实数解,求实数a的取值范围. 解析:解法一 令2=t(t>0),则原方程可化为 t+at+a+1=0,(*)

问题转化为方程(*)在(0,+∞)上有实数解,求a的取值范围. ①当方程(*)的根都在(0,+∞)上时,可得下式 Δ=a-4(a+1)≥0,??

? ?t1+t2=-a>0,

??t1·t2=a+1>0

2

2

x

x

x

?a≤2-22或a≥2+2?a<0,?a>-1,

2,

即-1<a≤2-22,

②当方程(*)的根一个在(0,+∞)上,另一根在(-∞,0]上时, 令f(t)=t+at+a+1得f(0)≤0,即a≤-1. 由①②知满足条件的a的取值范围为 (-∞,2-22]. 解法二 令t=2(t>0), 则原方程可化为t+at+a+1=0. 1+t(t-1)+2

变形为a=-=- 1+t1+t2??=-?(t-1)+

t+1???

2?-2?=-?(t+1)+≤-(22-2)=2-22. t+1???当且仅当t=2-1时取等号. 所以a的取值范围是(-∞,2-22].

2

2

2x

2

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

12.直线m:y=kx+1和双曲线x2-y2=1的左支交于A,B两点,直线l过点P(-2,0)和线段AB的中点M,求l在y轴上的截距b的取值范围. ?y=kx+1,?解析:由?2(x≤-1)消去y, 2?x-y=1?得(k-1)x+2kx+2=0.① 因为直线m与双曲线的左支有两个交点,所以方程①有两个不相等的负实数根. 22?2k?x+x=<0,1-k所以?-2x·x=>0,??1-k122122100000Δ=4k+8(1-k)>0,

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com