当前位置:首页 > 2014年中考数学真题汇编-运动变化类的压轴题
?对称轴t??952?(?)910?1 ?当运动1秒时,△PBQ面积最大,S?PBQ??最大为999??,105109, 10(3)如图,设33K(m,m2?m?3) 84连接CK、BK,作KL//y轴交BC与L, 由(2)知:S?PBQ?9, 109 4?S?CBK:SPBQ?5:2 ?S?CBK?设直线BC的解析式为y?kx?n ?B(4,0),C(0,?3) 3??4k?n?0?k?,解得:???4 n??3???n??33?直线BC的解析式为y?x?3 43?L(m,m?3) 433KL?m?m2 28?S?CBK?S?KLC?S?KLB 133133?(m?m2)?m??(m?m2)?(4?m) 2282281332 ??4?(m?m) 2283329即:2(m?m)? 284解得:m?1或m?3 ? ? 33
?K坐标为(1,?2715)或(3,?) 88【点评】: 本题综合考查了二次函数的图象与性质、待定系数法求函数解析式、一次函数、一元二次方程、相似三角形性质、动点问题等重要知识点. 【题7】(2014年四川巴中第31题)如图,在平面直角坐标系xOy中,抛物线y=ax+bx﹣4与x轴交于点A(﹣2,0)和点B,与y轴交于点C,直线x=1是该抛物线的对称轴. (1)求抛物线的解析式;
(2)若两动点M,H分别从点A,B以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到达原点时,点H立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,经过点M的直线l⊥x轴,交AC或BC于点P,设点M的运动时间为t秒(t>0).求点M的运动时间t与△APH的面积S的函数关系式,并求出S的最大值.
2
【分析】:(1)根据抛物线y=ax+bx﹣4与x轴交于点A(﹣2,0),直线x=1是该抛物线的对称轴,得到方程组
,解方程组即可求出抛物线的解析式;
2
(2)由于点M到达抛物线的对称轴时需要3秒,所以t≤3,又当点M到达原点时需要2秒,且此时点H立刻掉头,所以可分两种情况进行讨论:①当0<t≤2时,由△AMP∽△AOC,得出比例式,求出PM,AH,根据三角形的面积公式求出即可;②当2<t≤3时,过点P作PM⊥x轴于M,PF⊥y轴于点F,表示出三角形APH的面积,利用配方法求出最值即可.
2
【解答】解:(1)∵抛物线y=ax+bx﹣4与x轴交于点A(﹣2,0),直线x=1是该抛物线的对称轴, ∴
,解得:
,∴抛物线的解析式是:y=x﹣x﹣4,
2
(2)分两种情况:
①当0<t≤2时,∵PM∥OC,∴△AMP∽△AOC, ∴=
,即
2
=,∴PM=2t.
解方程x﹣x﹣4=0,得x1=﹣2,x2=4,
∵A(﹣2,0),∴B(4,0),∴AB=4﹣(﹣2)=6.
34
∵AH=AB﹣BH=6﹣t,
∴S=PM?AH=×2t(6﹣t)=﹣t+6t=﹣(t﹣3)+9,
当t=2时S的最大值为8; ②当2<t≤3时,过点P作PM⊥x轴于M,作PF⊥y轴于点F,则△COB∽△CFP, 又∵CO=OB, ∴FP=FC=t﹣2,PM=4﹣(t﹣2)=6﹣t,AH=4+(t﹣2)=t+1, ∴S=PM?AH=(6﹣t)(t+1)=﹣t+4t+3=﹣(t﹣)+当t=时,S最大值为
.
2
2
2
2
,
综上所述,点M的运动时间t与△APQ面积S的函数关系式是
S=,S的最大值为.
【点评】: 本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数的解析式,三角形的面积,二次函数的最值等知识,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.. 三、几何图形运动问题
【题1】(2014?苏州第28题)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)
(1)如图①,连接OA、AC,则∠OAC的度数为 105 °; (2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长); (3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图). 【考点】: 圆的综合题. 【分析】: (1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案; (2)首先得出,∠C1A1D1=60°,再利用A1E=AA1﹣OO1﹣2=t﹣2,求出t的值, 35
进而得出OO1=3t得出答案即可; (3)①当直线AC与⊙O第一次相切时,设移动时间为t1,②当直线AC与⊙O第二次相切时,设移动时间为t2,分别求出即可. 【解答】: 解:(1)∵l1⊥l2,⊙O与l1,l2都相切, ∴∠OAD=45°, ∵AB=4cm,AD=4cm, ∴CD=4cm,AD=4cm, ∴tan∠DAC===, ∴∠DAC=60°, ∴∠OAC的度数为:∠OAD+∠DAC=105°, 故答案为:105; (2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E, 连接O1E,可得O1E=2,O1E⊥l1, 在Rt△A1D1C1中,∵A1D1=4,C1D1=4, ∴tan∠C1A1D1=,∴∠C1A1D1=60°, 在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°, ∴A1E==, ∵A1E=AA1﹣OO1﹣2=t﹣2, ∴t﹣2=∴t=, +2, +6; ∴OO1=3t=2 (3)①当直线AC与⊙O第一次相切时,设移动时间为t1, 如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置, 设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2, ∴O2F⊥l1,O2G⊥A2G2, 由(2)得,∠C2A2D2=60°,∴∠GA2F=120°, ∴∠O2A2F=60°, 36
共分享92篇相关文档