当前位置:首页 > 概率论与数理统计基本概念
概率论与数理统计复习
第一章 概率论的基本概念 一.基本概念
随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E的所有可能结果组成的集合. 样本点(基本事件):E的每个结果. 随机事件(事件):样本空间S的子集.
必然事件(S):每次试验中一定发生的事件. 不可能事件(F):每次试验中一定不会发生的事件. 二. 事件间的关系和运算
1.AB(事件B包含事件A )事件A发生必然导致事件B发生. 2.A∪B(和事件)事件A与B至少有一个发生. 3. A∩B=AB(积事件)事件A与B同时发生. 4. A-B(差事件)事件A发生而B不发生.
5. AB=F (A与B互不相容或互斥)事件A与B不能同时发生.
6. AB=F且A∪B=S (A与B互为逆事件或对立事件)表示一次试验中A与B必有一个且仅有一个发生. B=A, A=B .
运算规则 交换律 结合律 分配律 德?摩根律 三. 概率的定义与性质
1.定义 对于E的每一事件A赋予一个实数,记为P(A),称为事件A的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;
(3)可列可加性 对于两两互不相容的事件A1,A2,...(A iAj=φ, i≠j, i,j=1,2,...), P(A1∪A2∪...)=P( A1)+P(A2)+... 2.性质
(1) P(F) = 0 , 注意: A为不可能事件 P(A)=0 . (2)有限可加性 对于n个两两互不相容
的事件A1,A2,...,A n ,
P(A1∪A2∪...∪A n)=P(A1)+P(A2)+...+P(A n) (有限可加性与可列可加性合称加法定理) (3)若AB, 则P(A)≤P(B), P(B-A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .
(5)广义加法定理 对于任意二事件A,B ,P(A∪B)=P(A)+P(B)-P(AB) . 对于任意n个事件A1,A2,...,A n
...+(-1)n-1P(A1A2...A n) 四.等可能(古典)概型
1.定义 如果试验E满足:(1)样本空间的元素只有有限个,即S={e1,e2,...,e n};(2)每一个基本事件的概率相等,即P(e1)=P(e2)=...= P(e n ).则称试验E所对应的概率模型为等可能(古典)概型. 2.计算公式 P(A)=k / n 其中k是A中包含的基本事件数, n是S中包含的基本事件总数. 五.条件概率
1.定义 事件A发生的条件下事件B发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).
2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).
P(A1A2...A n)=P(A1)P(A2|A1)P(A3|A1A2)...P(A n|A1A2...A n-1) (n≥2, P(A1A2...A n-1) > 0) 3. B1,B2,...,B n是样本空间S的一个划分(BiBj=φ,i≠j,i,j=1,2,...,n, B1∪B2∪...∪B n=S) ,则 当P(B i)>0时,有全概率公式 P(A)=
当P(A)>0, P(B i)>0时,有贝叶斯公式P (Bi|A)= . 六.事件的独立性
1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B为相互独立的事件. (1)两个事件A,B相互独立? P(B)= P (B|A) .
(2)若A与B,A与,与B, ,与中有一对相互独立,则另外三对也相互独立.
2.三个事件A,B,C满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C三事件相互独立. 3.n个事件A1,A2,...,A n,如果对任意k (1 1.在随机试验E的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量. 2.随机变量X的分布函数F(x)=P{X≤x} , x是任意实数. 其性质为: (1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x1 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量) 1.离散型随机变量的分布律 P{X= x k}= p k (k=1,2,...) 也可以列表表示. 其性质为: (1)非负性 0≤Pk≤1 ; (2)归一性 . 2.离散型随机变量的分布函数 F(x)=为阶梯函数,它在x=x k (k=1,2,...)处具有跳跃点,其跳跃值为p k=P{X=x k} . 3.三种重要的离散型随机变量的分布 (1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1-p (0 (2)X~b(n,p)参数为n,p的二项分布P{X=k}=(k=0,1,2,...,n) (0 0) 三.连续型随机变量 1.定义 如果随机变量X的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=,-∞< x <∞,则称X为连续型随机变量,其中f (x)称为X的概率密度(函数). 2.概率密度的性质 (1)非负性 f(x)≥0 ; (2)归一性 =1 ; (3) P{x 1 注意:连续型随机变量X取任一指定实数值a的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布 (1)X~U (a,b) 区间(a,b)上的均匀分布 . (2)X服从参数为q的指数分布. (q>0). (3)X~N (m,s2 )参数为m,s的正态分布 -¥ 特别, m=0, s2 =1时,称X服从标准正态分布,记为X~N (0,1),其概率密度 , 标准正态分布函数 , F(-x)=1-Φ(x) . 若X~N ((m,s2), 则Z=~N (0,1), P{x1 若P{Z>z a}= P{Z<-z a}= P{|Z|>z a/2}= a,则点z a,-z a, ±z a/ 2分别称为标准正态分布的上,下,双侧a分位点. 注意:F(z a)=1-a , z 1- a= -z a. 四.随机变量X的函数Y= g (X)的分布 1.离散型随机变量的函数 X x 1 x2 ... x k ... p k p 1 p2 ... p k ... Y=g(X) g(x1) g(x2) ... g(x k) ... 若g(x k) (k=1,2,...)的值全不相等,则由上表立得Y=g(X)的分布律. 若g(x k) (k=1,2,...)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数 若X的概率密度为fX(x),则求其函数Y=g(X)的概率密度fY(y)常用两种方法: (1)分布函数法 先求Y的分布函数FY(y)=P{Y≤y}=P{g(X)≤y}= 其中Δk(y)是与g(X)≤y对应的X的可能值x所在的区间(可能不只一个),然后对y求导即得fY(y)=FY /(y) . (2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 其中h(y)是g(x)的反函数 , a= min (g (-¥),g (¥)) b= max (g (-¥),g (¥)) . 如果f (x)在有限区间[a,b]以外等于零,则 a= min (g (a),g (b)) b= max (g (a),g (b)) . 第三章 二维随机变量及其概率分布 一.二维随机变量与联合分布函数 1.定义 若X和Y是定义在样本空间S上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量. 对任意实数x,y,二元函数F(x,y)=P{X≤x,Y≤y}称为(X,Y)的(X和Y的联合)分布函数. 2.分布函数的性质 (1)F(x,y)分别关于x和y单调不减. (2)0≤F(x,y)≤1 , F(x,- ¥)=0, F(-¥,y)=0, F(-¥,-¥)=0, F(¥,¥)=1 . (3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1 P{x 1 1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i,y j) (i ,j =1,2,... )称(X,Y)为二维离散型随机变量.并称P{X= x i,Y= y j }= p i j为(X,Y)的联合分布律.也可列表表示. 2.性质 (1)非负性 0≤p i j≤1 . (2)归一性 . 3. (X,Y)的(X和Y的联合)分布函数F(x,y)= 三.二维连续型随机变量及其联合概率密度 1.定义 如果存在非负的函数f (x,y),使对任意的x和y,有F(x,y)= 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X和Y的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 . (3)若f (x,y)在点(x,y)连续,则 (4)若G为xoy平面上一个区域,则. 四.边缘分布 1. (X,Y)关于X的边缘分布函数 FX (x) = P{X≤x , Y<¥}= F (x , ¥) . (X,Y)关于Y的边缘分布函数 FY (y) = P{X<¥, Y≤y}= F (¥,y) 2.二维离散型随机变量(X,Y) 关于X的边缘分布律 P{X= x i }= = p i· ( i =1,2,...) 归一性 . 关于Y的边缘分布律 P{Y= y j }= = p·j ( j =1,2,...) 归一性 . 3.二维连续型随机变量(X,Y) 关于X的边缘概率密度f X (x)= 归一性 关于Y的边缘概率密度f Y (y)= 归一性 五.相互独立的随机变量 1.定义 若对一切实数x,y,均有F(x,y)= FX (x) FY (y) ,则称X和Y相互独立. 2.离散型随机变量X和Y相互独立p i j= p i··p·j ( i ,j =1,2,...)对一切xi,yj成立. 3.连续型随机变量X和Y相互独立f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布 1.二维离散型随机变量的条件分布 定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=yj}>0,则称 P{X=x i |Y=yj} 为在Y= yj条件下随机变量X的条件分布律. 同样,对于固定的i,若P{X=xi}>0,则称 P{Y=yj|X=x i} 为在X=xi条件下随机变量Y 的条件分布律. 第四章 随机变量的数字特征 一.数学期望和方差的定义 随机变量X 离散型随机变量 连续型随机变量 分布律P{X=x i}= pi ( i =1,2,...) 概率密度f (x) 数学期望(均值)E(X) (级数绝对收敛) (积分绝对收敛) 方差D(X)=E{[X-E(X)]2} =E(X2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] (级数绝对收敛) (积分绝对收敛) 标准差s(X)=√D(X) . 二.数学期望与方差的性质 1. c为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) . 2.X,Y为任意随机变量时, E (X±Y)=E(X)±E(Y) . 3. X与Y相互独立时, E(XY)=E(X)E(Y) , D(X±Y)=D(X)+D(Y) . 4. D(X) = 0 P{X = C}=1 ,C为常数. 三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0 4.X~ U(a,b) (a+b)/2 (b-a) 2/12
共分享92篇相关文档