µ±Ç°Î»ÖãºÊ×Ò³ > ³ÌÐòÉè¼Æ»ù´¡Ï°Ìâ
7.8 ϰÌâ
1.±àÖÆÒ»¸öC³ÌÐò£¬´Ó¼üÅÌÊäÈëÒ»¸öÕýÕûÊý£¬Èç¹û¸ÃÊýÎªËØÊý£¬ÔòÊä³ö¸ÃËØÊý£¬·ñÔòÊä³ö¸ÃÊýµÄËùÓÐÒò×Ó(³ýÈ¥1Óë×ÔÉí)¡£
2.±àÖÆÒ»¸öC³ÌÐò£¬´Ó¼üÅÌÊäÈëÒ»¸öÕýÕûÊýN£¬È»ºó¼ÆËã²¢Êä³ö S=1?21?22???2|N| ×îºó¼ÆËã²¢Êä³ö T=1?111????(?1)K?1 23KÆäÖÐK?SµÄÕûÊý²¿·Ö¡£
3.±àÖÆÒ»¸öC³ÌÐò£¬¼ÆËã²¢Êä³ö¶àÏîʽµÄÖµ
Sn?1?05.x?05.(05.?1)205.(05.?1)(05.?2)305.(05.?1)?(05.?n?1)nx?x???x 2!3!n!µÄÖµ£¬Ö±µ½ |Sn-Sn-1|<0.000001 Ϊֹ¡£ÆäÖÐx´Ó¼üÅÌÊäÈë¡£
4. ±àÖÆÒ»¸öC³ÌÐò£¬¼ÆËãÏÂÁм¶ÊýºÍ£º sn=1+(2/1)+(3/2)+(5/3)+(8/5)+(13/8)+?+(an/an-1) ÆäÖÐn¡Ý1£¬ÓɼüÅÌÊäÈ룻s1=1¡£
5.±àÖÆÒ»¸öC³ÌÐò£¬¼ÆËã²¢Êä³öÏÂÁм¶ÊýÖ®ºÍ£º x2x3xne?1?x?????
2!3!n!ÆäÖÐnÓëx´Ó¼üÅÌÊäÈë¡£
x 6.±àÖÆÒ»¸öC³ÌÐò£¬Êä³öÄÜд³ÉÁ½¸öÊýƽ·½Ö®ºÍµÄËùÓÐÈýλÊý¡£
7.Èç¹ûÒ»¸öÊýÇ¡ºÃµÈÓÚËüµÄËùÓÐÒò×Ó(°üÀ¨1µ«²»°üÀ¨×ÔÉí)Ö®ºÍ£¬Ôò³ÆÖ®Îª¡°ÍêÊý¡±¡£ÀýÈ磬6µÄÒò×ÓΪ1¡¢2¡¢3£¬ÇÒ1+2+3=6£¬¼´6ÊÇÒ»¸ö¡°ÍêÊý¡±¡£±àÖÆÒ»¸öC³ÌÐò£¬¼ÆËã²¢Êä³ö1000ÒÔÄÚµÄËùÓС°ÍêÊý¡±Ö®ºÍ¡£
8.±àÖÆÒ»¸öC³ÌÐò£¬´Ó¼üÅÌÊäÈë30¸öʵÊý£¬·Ö±ð¼ÆËã²¢Êä³öÒÔÏÂ5¸öÁ¿£ºËùÓÐÕýÊýÖ®ºÍ£¬ËùÓиºÊýÖ®ºÍ£¬ËùÓÐÊýµÄ¾ø¶ÔÖµÖ®ºÍ£¬ÕýÊýµÄ¸öÊý£¬¸ºÊýµÄ¸öÊý¡£
9. 100ԪǮÂò100Ö»¼¦£¬Ä¸¼¦3Ôª/Ö»£¬¹«¼¦2Ôª/Ö»£¬Ð¡¼¦0.5Ôª/Ö»¡£±àÖÆÒ»¸öC³ÌÐò£¬Öƶ¨Âò¼¦·½°¸¡£
10. ÉèA£¬B£¬C£¬D£¬EÎåÈË£¬Ã¿È˶îÍ·ÉÏÌùÁËÒ»ÕÅ»òºÚ»ò°×µÄÖ½¡£ÎåÈ˶Ô×ø£¬Ã¿È˶¼¿ÉÒÔ¿´µ½ÆäËûÈ˶îÍ·ÉϵÄÖ½µÄÑÕÉ«£¬µ«¶¼²»ÖªµÀ×Ô¼º¶îÍ·ÉϵÄÖ½µÄÑÕÉ«¡£ÎåÈËÏ໥¹Û²ìºó¿ªÊ¼Ëµ»°£º
A˵£ºÎÒ¿´¼ûÓÐÈýÈ˶îÍ·ÉÏÌùµÄÊǰ×Ö½£¬Ò»È˶îÍ·ÉÏÌùµÄÊǺÚÖ½¡£ B˵£ºÎÒ¿´¼ûÆäËûËÄÈ˶îÍ·ÉÏÌùµÄ¶¼ÊǺÚÖ½¡£
C˵£ºÎÒ¿´¼ûÓÐÒ»È˶îÍ·ÉÏÌùµÄÊǰ×Ö½£¬ÆäËûÈýÈ˶îÍ·ÉÏÌùµÄÊǺÚÖ½¡£ D˵£ºÎÒ¿´¼ûËÄÈ˶îÍ·ÉÏÌùµÄ¶¼Êǰ×Ö½¡£ EʲôҲû˵¡£
ÏÖÔÚÒÑÖª¶îÍ·ÉÏÌùºÚÖ½µÄÈË˵µÄ¶¼ÊÇÕæ»°£¬¶îÍ·ÉÏÌù°×Ö½µÄÈË˵µÄ¶¼ÊǼٻ°¡£±àÖÆÒ»¸öC³ÌÐò£¬È·¶¨ÕâÎåÈËÖÐ˵ĶîÍ·ÉÏÌù°×Ö½£¬ËµÄ¶îÍ·ÉÏÌùºÚÖ½£¿
11. ѰÕÒ1000ÒÔÄÚ×îСµÄ10¸öËØÊýÓë×î´óµÄ10¸öËØÊý£¨È¥µôÖØ¸´µÄËØÊý£©£¬¼ÆËã²¢Êä³öÕâ20¸öËØÊýÖ®ºÍ¡£ ¾ßÌåÒªÇó£º
(1) »³ö¼ÆËã¹ý³ÌµÄ½á¹¹»¯Á÷³Ìͼ¡£
(2) ËäÈ»1000ÒÔÄÚËØÊý¸öÊý³¬¹ý20¸ö£¬µ«ÈÔÒªÇó¿¼ÂÇ1000ÒÔÄÚ²»¹»10¸ö×îÐ¡ËØÊýÓë10¸ö×î´óËØÊý£¬ÒÔ¼°×îСµÄ10¸öËØÊýÓë×î´óµÄ10¸öËØÊýÓÐÖØ¸´µÄÇé¿ö¡£ (3) Êä³öÒªÓÐÎÄ×Ö˵Ã÷¡£Êä³öÐÎʽΪ zuixiaosushu£ºËØÊý1£¬ËØÊý2£¬?£¬ËØÊý10 zui da sushu£ºËØÊý1£¬ËØÊý2£¬?ËØÊý10 sushuzhi he£ººÍµÄ¾ßÌåÖµ
(4) ÔÚ³ÌÐòÄÚ²¿¼Ó±ØÒªµÄ×¢ÊÍ£¨ÖÁÉÙÓÐÈý´¦£©¡£ ·½·¨ËµÃ÷£º
¶ÔÓÚij¸ö£¨´ÓСµ½´óÓë´Ó´óµ½Ð¡£©×ÔÈ»Êýk£¬¿ªÊ¼Ê±ÖñêÖ¾flagΪ0£¬È»ºó¶Ô2µ½kÖеÄ×ÔÈ»Êýj½øÐмì²â£¬µ±·¢ÏÖjÊÇkµÄÒò×Ó£¬¾ÍÖÃflagΪ1£¬±íʾ²»±ØÔÙ¶Ô±ðµÄ×ÔÈ»Êý½øÐмì²â£¬ÒòΪ´ËʱÒѾ¿ÉÒÔÈ·¶¨k²»ÊÇËØÊýÁË£¬Ö»Óе±2µ½kÖеÄËùÓÐ×ÔÈ»Êý¶¼²»ÊÇkµÄÒò×Ó£¨¼´flag±£³ÖΪ0£©Ê±£¬ËµÃ÷kÎªËØÊý£¬Êä³ök£¬²¢½øÐÐÀÛ¼Ó¡£
12. A¡¢B¡¢C¡¢D¡¢EÎåÈË·ÖÆ»¹û¡£A½«ËùÓÐµÄÆ»¹û·ÖΪÎå·Ý£¬½«¶àÓàµÄÒ»¸öÆ»¹û³ÔµôºóÔÙÄÃ×ß×Ô¼ºµÄÒ»·ÝÆ»¹û£»B½«Ê£ÏÂµÄÆ»¹û·ÖΪÎå·Ý£¬½«¶àÓàµÄÒ»¸öÆ»¹û³ÔµôºóÔÙÄÃ×ß×Ô¼ºµÄÒ»·ÝÆ»¹û£»C¡¢D¡¢EÒÀ´Î°´Í¬ÑùµÄ·½·¨£¬½«Ê£ÏÂµÄÆ»¹û·ÖΪÎå·Ý£¬³Ôµô¶àÓàµÄÒ»¸öÆ»¹ûºóÄÃ×ß×Ô¼ºµÄÒ»·ÝÆ»¹û¡£±à³Ì¼ÆËãÔÀ´ÖÁÉÙÓжàÉÙ¸öÆ»¹û£¿A¡¢B¡¢C¡¢D¡¢E¸÷µÃµ½¶àÉÙ¸öÆ»¹û£¿ ¾ßÌåÒªÇó£º
(1) »³ö¼ÆËã¹ý³ÌµÄ½á¹¹»¯Á÷³Ìͼ¡£ (2) Êä³öÒªÓÐÎÄ×Ö˵Ã÷¡£
(3) ÔÚ³ÌÐòÄÚ²¿¼Ó±ØÒªµÄ×¢ÊÍ£¨ÖÁÉÙÓÐÈý´¦£©¡£ ·½·¨ËµÃ÷£º
²ÉÓÃÖð²½ÊÔ̽µÄ·½·¨¡£
É赱ǰÊÔ̽µÄÆ»¹ûÊýΪn¡£Èç¹ûnÂú×ãÏÂÁÐÌõ¼þ£º n-1£¨¶àÓàµÄÒ»¸ö±»³Ôµô£©ºóÒªÄܱ»5Õû³ý£» ÄÃ×ßÒ»·Ýºó£¬ÓàϵÄËÄ·ÝÆ»¹ûÊýΪ4*(n-1)/5¡£ °´ÉÏÊö²ßÂÔÁ¬Ðø½øÐÐÎå´Î·ÖÅ䣬Èç¹ûÿ´Î·ÖÅäʱ¾ùÂú×ãÆäÖеÄÌõ¼þ£¬ÔòÊÔ̽µÄn¼´ÎªÔÀ´µÄÆ»¹ûÊýx¡£
ΪÁ˵ÚÒ»´ÎÄÜ·ÖÅ䣬ÊÔ̽´Ó6¿ªÊ¼¡£
¸ù¾Ý·ÖÅä²ßÂÔ£¬×îºóA£¬B£¬C£¬D£¬EÎåÈ˵õ½µÄÆ»¹ûÊý£¨²»°üÀ¨³ÔµôµÄÒ»¸öÆ»¹û£©¿ÉÒÔ°´ÈçϹ«Ê½ÒÀ´Î¼ÆË㣺 a=(x-1)/5 b=(4*a-1)/5 c=(4*b-1)/5 d=(4*c-1)/5 e=(4*d-1)/5
13. ijµ¥Î»ÒªÔÚA£¬B£¬C£¬D£¬E£¬FÁùÈËÖÐÑ¡ÅÉÈô¸ÉÈËÈ¥Ö´ÐÐÒ»ÏîÈÎÎñ£¬Ñ¡È˵ÄÌõ¼þÈçÏ£º (1) ÈôC²»È¥£¬ÔòBÒ²²»È¥£» (2) CºÍDÁ½ÈËÖÐÈ¥Ò»¸ö£»
(3) DºÍEҪô¶¼È¥£¬ÒªÃ´¶¼²»È¥£» (4) A£¬B£¬FÈýÈËÖÐҪȥÁ½¸ö£» (5) CºÍF²»ÄÜÒ»ÆðÈ¥£º
(6) EºÍFÁ½ÈËÖÐÖÁÉÙÈ¥Ò»¸ö¡£ ÎÊÓ¦¸ÃÑ¡ÄöÈËÈ¥£¿ ¾ßÌåÒªÇó£º
(1) »³ö¼ÆËã¹ý³ÌµÄ½á¹¹»¯Á÷³Ìͼ¡£ (2) Êä³öÒªÓÐÎÄ×Ö˵Ã÷¡£
(3) ÔÚ³ÌÐòÄÚ²¿¼Ó±ØÒªµÄ×¢ÊÍ£¨ÖÁÉÙÓÐÈý´¦£©¡£
8.5 ϰÌâ
1. ±àдһ¸öº¯Êýsabc()£¬¸ù¾Ý¸ø¶¨µÄÈý½ÇÐÎÈýÌõ±ß³¤a£¬b£¬c£¬º¯Êý·µ»ØÈý½ÇÐεÄÃæ»ý¡£ 2. ±àдһ¸ö¼ÆËã½×³ËÖµµÄº¯Êýp()£¨¸Ãº¯ÊýΪ˫¾«¶ÈʵÐÍ£©£»ÔÙ±àдһ¸öÖ÷º¯Êý£¬´Ó¼ü
m!ÅÌÊäÈëÁ½¸öÕýÕûÊýmÓën(m¡Ýn)£¬Í¨¹ýµ÷Óú¯Êýp()£¬¼ÆËãµÄÖµ(¼´ÇóAnm)¡£
(m?n)! 3. ±àдһ¸öº¯Êý£¬¼ÆËã²¢·µ»Ø¸ø¶¨ÕýÕûÊýmÓënµÄ×î´ó¹«Ô¼Êý¡£
4. ±àдһ¸öÖ÷º¯Êý£¬µ÷ÓÃÀý8.3Öеĺ¯Êýsushu()£¬Êä³öСÓÚ1000µÄ×î´óÎå¸öËØÊý¡£ 5. ±àдһ¸öÖ÷º¯Êý£¬µ÷ÓÃÀý8.3Öеĺ¯Êýsushu()£¬ÑéÖ¤6µ½1000ÖеÄËùÓÐżÊý¾ùÄܱíʾ³ÉÁ½¸öËØÊýÖ®ºÍ¡£
6. ±àдһ¸öµÝ¹éº¯Êý£¬¼ÆËã²¢·µ»Ø·Æ²¨ÄÇÆõ£¨Fibonacci£©ÊýÁÐÖеÚnÏîµÄÖµ¡£·Æ²¨ÄÇÆõÊýÁе͍ÒåÈçÏ£º
Fib(1)=1£¬Fib(2)=1 Fib(n)=Fib(n-1)+Fib(n-2) 7. ±àдһ¸öµÝ¹éº¯Êý£¬¼ÆËã²¢·µ»Ø°¢¿ËÂê(Ackermann)º¯ÊýÖµ¡£°¢¿ËÂ꺯ÊýµÄ¶¨ÒåÈçÏ£º
?x?1?x??0Ack(n,x,y)???1?2??Ack(n?1,Ack(n,x,y?1),x)n?0n?1ÇÒy?0n?2ÇÒy?0 n?3ÇÒy?0n?4ÇÒy?0n?0ÇÒy?0ÆäÖÐn£¬x£¬y¾ùΪ·Ç¸ºÕûÊý¡£ 8. ±àд¼ÆËãn!µÄµÝ¹éº¯Êý¡£
9. ±àдһ¸öµÝ¹éº¯Êý£¬Æä¹¦ÄÜÊǽ«Ò»¸öÕýÕûÊýnת»»³É×Ö·û´®£¨ÒªÇó¸÷×Ö·ûÖ®¼äÓÃÒ»¸ö¿Õ¸ñ·Ö¸ô£©Êä³ö¡£ÀýÈ磬ÊäÈëµÄÕýÕûÊýΪ735£¬Ó¦Êä³ö×Ö·û´®¡°7 3 5¡±¡£ÆäÖÐÕýÕûÊýÔÚÖ÷º¯ÊýÖдӼüÅÌÊäÈ룬ҪÇóÅÐ¶ÏÆäÊäÈëµÄºÏÀíÐÔ¡£
10. ¼ÆËã²¢Êä³ö500ÒÔÄÚµÄËùÓС°Ç×ÃÜÊý¡±¶Ô£¬²¢Êä³öËùÓС°ÍêÊý¡±Ö®ºÍ¡£ ¾ßÌåÒªÇó£º
(1) ±àдһ¸öº¯Êýfacsum(n)£¬·µ»Ø¸ø¶¨ÕýÕûÊýnµÄËùÓÐÒò×Ó£¨°üÀ¨1µ«²»°üÀ¨×ÔÉí£©Ö®ºÍ¡£
(2) ±àдһ¸öÖ÷º¯Êý£¬µ÷ÓÃ(1)Öеĺ¯Êýfacsum(n)£¬Ñ°ÕÒ²¢Êä³ö500ÒÔÄÚµÄËùÓС°Ç×ÃÜÊý¡±¶ÔÒÔ¼°¼ÆËãËùÓС°ÍêÊý¡±Ö®ºÍ¡£
(3) ·Ö±ð»³öº¯Êýfacsum(n)ºÍÖ÷º¯Êý¼ÆËã¹ý³ÌµÄ½á¹¹»¯Á÷³Ìͼ¡£
(4) ÔÚÊä³öÿ¶Ô¡°Ç×ÃÜÊý¡±Ê±£¬ÒªÇóСÊýÔÚǰ¡¢´óÊýÔں󣬲¢È¥µôÖØ¸´µÄÊý¶Ô¡£ÀýÈ磬220Óë284ÊÇÒ»¶Ô¡°Ç×ÃÜÊý¡±£¬¶ø284Óë220Ò²ÊÇÒ»¶Ô¡°Ç×ÃÜÊý¡±£¬´ËʱֻҪÇóÊä³ö220Óë284Õâ¶Ô¡°Ç×ÃÜÊý¡±¡£
(5) Êä³öÒªÓÐÎÄ×Ö˵Ã÷£¨Ó¢ÎÄ»òººÓïÆ´Òô£©¡£Êä³öʱÿ¶Ô¡°Ç×ÃÜÊý¡±ÓÃÒ»¶ÔÔ²À¨ºÅÀ¨ÆðÀ´£¬Á½ÊýÖ®¼äÓöººÅ·Ö¸ô£¬ÇÒËùÓеġ°Ç×ÃÜÊý¡±¶ÔÕ¼Ò»ÐС£Êä³öÐÎʽΪ ¸÷¶Ô¡°Ç×ÃÜÊý¡± ¡°ÍêÊý¡±Ö®ºÍ
(6) ÔÚ³ÌÐòÄÚ²¿¼Ó±ØÒªµÄ×¢ÊÍ£¨ÖÁÉÙÓÐÈý´¦£©¡£
(7) ½«Á½¸öº¯Êý·Ö±ð·ÅÔÚÁ½¸öÎļþÖнøÐбàÒë¡¢Á¬½Ó²¢ÔËÐС£ (8) ½«Á½¸öº¯Êý·ÅÔÚÒ»¸öÎļþÖнøÐбàÒë¡¢Á¬½Ó²¢ÔËÐС£ ·½·¨ËµÃ÷£º
Èç¹û×ÔÈ»ÊýMµÄËùÓÐÒò×Ó£¨°üÀ¨1µ«²»°üÀ¨×ÔÉí£¬ÏÂͬ£©Ö®ºÍΪN£¬¶øNµÄËùÓÐÒò×ÓÖ®ºÍΪM£¬Ôò³ÆMÓëNΪһ¶Ô¡°Ç×ÃÜÊý¡±¡£ÀýÈ磬6µÄËùÓÐÒò×ÓÖ®ºÍΪ1+2+3=6£¬Òò´Ë£¬6ÓëËü×ÔÉí¹¹³ÉÒ»¶Ô¡°Ç×ÃÜÊý¡±£»ÓÖÈ磬220µÄËùÓÐÒò×ÓÖ®ºÍΪ1+2+4+5+10+11+20+22+44+55+110=284£¬¶ø284µÄËùÓÐÒò×ÓÖ®ºÍΪ1+2+4+71+142=220£¬Òò´Ë£¬220Óë284Ϊһ¶Ô¡°Ç×ÃÜÊý¡±¡£
Èç¹ûÒ»¸ö×ÔÈ»ÊýµÄËùÓÐÒò×ÓÖ®ºÍÇ¡ºÃµÈÓÚËü×ÔÉí£¬Ôò³Æ¸Ã×ÔÈ»ÊýΪ¡°ÍêÊý¡±¡£ÀýÈ磬6²»½öÓëËü×ÔÉí¹¹³ÉÒ»¶Ô¡°Ç×ÃÜÊý¡±£¬ÇÒ6ÊÇÒ»¸ö¡°ÍêÊý¡±¡£ 11. ¼ÆËã²¢Êä³ö
?k!掙歜
?¾ßÌåÒªÇó£º
(1) ±àдһ¸ö¼ÆËãk!µÄµÝ¹éº¯Êý£¬Æäº¯ÊýÃû·µ»Øk!µÄÖµ¡£
(2) ±àдһ¸öÖ÷º¯Êý£¬Ê×ÏÈ´Ó¼üÅÌÊäÈëmºÍnµÄÖµ£¨ÒªÇón¡Ým¡Ý0£©,È»ºóµ÷ÓÃ(1)Öеĺ¯Êý¼ÆËã
?k!掙歜
? (3) ÔÚ¼ÆËãk!µÄµÝ¹éº¯ÊýÖУ¬Òª¼ì²éÐβÎkµÄºÏÀíÐÔ£¬µ±k<0ʱ£¬Ó¦Êä³ö³ö´íÐÅÏ¢£¬²¢·µ»Ø0Öµ¡£
(4) ÔÚÖ÷º¯ÊýÖÐÓ¦¼ì²é´Ó¼üÅÌÊäÈëµÄÊý¾ÝµÄºÏÀíÐÔ£¬¶ÔÓÚ²»ºÏÀíµÄÊäÈ룬ӦÊä³ö³ö´íÐÅÏ¢£¬²¢²»ÔÙµ÷ÓüÆËã¡£
(5) ·Ö±ðÊäÈë(m, n)=(-3, 7), (0, 0), (1, 7), (9, 13), (9, 4)ÔËÐÐÄãµÄ³ÌÐò¡£ 3. ÀûÓñ䲽³¤ÌÝÐÎÇó»ý·¨¼ÆË㶨»ý·Ö¡£ ¾ßÌåÒªÇó£º
(1) ±àдһ¸öº¯Êýst(a, b, eps)£¨ÒªÇó¸Ãº¯Êý·ÅÔÚ¶ÀÁ¢µÄÎļþÖУ©£¬Æä¹¦ÄÜÊÇÀûÓñ䲽³¤ÌÝÐÎÇó»ý·¨¼ÆË㶨»ý·Ö
s??baf(x)dx
ÆäÖÐepsΪ¾«¶ÈÒªÇó¡£
ÒªÇó»³ö¸Ãº¯Êý´¦ÀíµÄ½á¹¹»¯Á÷³Ìͼ¡£
(2) ±àдһ¸öÖ÷º¯ÊýÒÔ¼°¼ÆËã±»»ýº¯ÊýÖµµÄº¯Êýfun(x)£¬ÔÚÖ÷º¯ÊýÖе÷ÓÃ(1)Öеĺ¯Êýst(a, b, eps)£¬¼ÆËã²¢Êä³öÏÂÁлý·ÖÖµ
s??841dx x
¹²·ÖÏí92ƪÏà¹ØÎĵµ