当前位置:首页 > 数列极限
第一章 函数、极限、连续 第二节 数列极限
有关定理及方法:(1)柯西准则(不常用) (2)夹逼定理 (3)单调有界定理 (4)数列极限与其子列极限的关系 (5)求极限常用方法:适当缩放法,利用等价无穷小,化为函数极限,利用微分学、积分学及级数的知识及方法,另外极限的定义、性质、重要极限、恒等变形、变量代换是经常用到的知识和技巧 补充:
(1) stolz定理
b?bn0型stolz定理:设{an},{bn}都是无穷小量,数列{an}严格单调减少,若limn?1?l,则有
n??a0n?1?anlimbn?l
n??anb?bn*型stolz定理:设{an}是正无穷大量,数列{an}严格单调增加,若limn?1?l,则有
n???an?1?anlimbn?l
n??ana1???an?a。又若an?0,则limna1a2?an?a
n??n11????lnn????n(??0.577?为欧拉常数, ?n?0)2n(2)均值极限:若liman?a,则limn??nn?1,na?1(a?0),1?(3)例1:设xn?1?3?(2n?1),求limxn,limnxn,lim2n?1xn.
2?4?(2n)解:(1)由于2?1?3,4?3?5,?,2n?(2n?1)(2n?1),所以xn?由夹逼定理知 limxn?0 或:令yn?12n?1,又xn?0
12?4???(2n)2,则xn?yn,从而xn?xnyn?
2n?13???(2n?1)(2)由于
11?xn?1,又limn?1,所以limnxn?1 2n2n2(3)(分析:(2n?1)xn?(?1?3L(2n?1)21?3???(2n?1)?2?4???(2n)2)(2n?1)?[?/]?
2?4L(2n)2?4???(2n)21?3???(2n?1)?由此想到积分In??20sinnxdx)
Page 1 of 13
?解:考虑积分 In??20sinnxdx
I2n?1?3?(2n?1)?2?4?(2n) ?,I2n?1?2?4?(2n)21?3?(2n?1)又I2n?1?I2n?I2n?1?II2n?12n?1I2n?1,故1?2n??lim2n?1 2nI2n?12nI2n?1而
I2n1?3?(2n?1)2??2 ?()(2n?1)?(2n?1)xnI2n?12?4?(2n)222所以 lim(2n?1)xn?2??lim2n?1xn?2?
例2:求limnnn!
nnbnb2nnnna?b??解:方法一 :令an?,则 ?,b?n1nnbbn!n!n!1n?1n而limbnnn?1?lim()?e,故liman?e bn?1n?1nlnn?(ln1?ln2???lnn)xn?,其中xn?nlnn?(ln1?ln2???lnn)
nn方法二: lnan?又 limxn?1?xnn?1?limnln?1,所以 limlnan?1,从而liman?e
(n?1)?nn111nk方法三:limlnan??lim(ln1?ln2???lnn?nlnn)??lim?ln???lnxdx?1
0nnk?1n所以 liman?e
例3:求limn(n?1?n?1?2n)
32分析:n(n?1?32n?1?2n)?n2(1?11?1??2)?nn1?11?1??2nn
1n2只须求出函数极限 limx?011?x?1?x?2?,便可得结果。此函数极限可用洛必塔法则求出: 24x Page 2 of 13
或用泰勒公式去求:1?1111111?1????(?1)?2??(2) n2n2!22nn1?1111111?1????(?1)?2??(2), n2n2!22nn322故 n(n?1?n?1?2n)?n(1?1111?1 ?1??2)?n2(?2?o(2))?nn44nn1f(a?)n)n 例4:设f?(a)存在,且f(a)?0,求lim(1f(a?)n1f(a?)n?1,该极限属于1?型的问题,一般可利用重要极限或利用指数、对数去分析:易见
1f(a?)n解决:
nn111f(a?)f(a?)?f(a?)1nnn??1111f(a?)?f(a?)f(a?)nnnn1?11?11????f(a?f(a?)?f(a?)f(a?)?f(a?)?n???1?nn???1?nn???????111?f(a?)?????f(a?)f(a?)?????n?nn??????或:若f(a)?0
2f(a)11)??f(a?1n(lnf(a?)?lnf(a?))nnn?ef(a) ?1??e?f(a?n)???n??e2f?(a)f(a)若f(a)?0,同样可求出答案
例5:设an?1?12???1n?2n,证明{an}收敛
分析:为证数列收敛,我们首先想到用收敛准则 先看是否单调:
an?1?an?1n?11?2(n?1?n)?1n?1?2n?1?n?n?n?1n?1(n?1?n)?0
可见该数列单调减少,下面再说明有下界:
1??21x1dx,?,n??n?11xndx,an??n?11x1dx?2n?2n?1?2?2n??2
由此可得结论.这个方法很常规,本题证明有界性不易,本题利用级数的知识证数列收敛更容易:
Page 3 of 13
0?an?an?1?1n?1(n?1?n)2?1nn
由正项级数审敛法知
?(an?1?n?an?1)收敛,从而数列{an}收敛.
注:利用级数的知识去说明数列收敛一般有两种情况: (1) 若
?an?1?n收敛,则liman?0
??(2) 数列{an}收敛?级数
??(an?1n?an?1)收敛(或级数?(an?1?an)收敛)
n?1例6:设级数
?an收敛,数列{pn}严格单调增加,且limpn???,求limn?1p1a1??pnan
pn解:令An?a1???an,则an?An?An?1(n?2),a1?A1 由题设limAn?A存在,
p1a1?L?pnanp1A1?p2(A2?A1)?L?pn(An?An?1)?pnpn?pnAn?[An?1(pn?pn?1)?????A1(p2?p1)]B?An?npnpn
其中Bn?A1(p2?p1)???An?1(pn?pn?1) 而limBnB?Bn?limn?1?limAn?A pnpn?1?pnp1a1??pnan?A?A?0
pn故lim练习题
1.(1)limn(a?an)(a?0)1n12,(2)limnln(nsin)21n,(3)设
111nnsin?xn?(n?2)sin,求lim?xk (4)lim(?1)nnsinn2?2?
n?1n?1nk?1(提示:由拉氏中值定理 a?an?a(1n12?11?2)lna,易得结果:lna。或通过求函数极限 nn Page 4 of 13
共分享92篇相关文档