云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > (名师整理)最新数学中考专题冲刺《圆》压轴真题训练(含答案)

(名师整理)最新数学中考专题冲刺《圆》压轴真题训练(含答案)

  • 62 次阅读
  • 3 次下载
  • 2025/12/10 17:25:16

冲刺中考《圆》压轴真题训练

1.(2019?遂宁)如图,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=,

BC=6.

(1)求证:∠COD=∠BAC; (2)求⊙O的半径OC; (3)求证:CF是⊙O的切线.

解:(1)∵AG是⊙O的切线,AD是⊙O的直径, ∴∠GAF=90°, ∵AG∥BC, ∴AE⊥BC, ∴CE=BE, ∴∠BAC=2∠EAC, ∵∠COE=2∠CAE, ∴∠COD=∠BAC; (2)∵∠COD=∠BAC,

1

∴cos∠BAC=cos∠COE=∴设OE=x,OC=3x, ∵BC=6, ∴CE=3, ∵CE⊥AD, ∴OE2+CE2=OC2, ∴x2+32=9x2, ∴x=

(负值舍去),

=,

∴OC=3x=

∴⊙O的半径OC为(3)∵DF=2OD, ∴OF=3OD=3OC, ∴

∵∠COE=∠FOC, ∴△COE∽△FOC, ∴∠OCF=∠DEC=90°, ∴CF是⊙O的切线.

2.(2019?温州)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,

E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.

2

(1)求证:四边形DCFG是平行四边形. (2)当BE=4,CD=AB时,求⊙O的直径长.

(1)证明:连接AE, ∵∠BAC=90°, ∴CF是⊙O的直径, ∵AC=EC, ∴CF⊥AE, ∵AD是⊙O的直径, ∴∠AED=90°, 即GD⊥AE, ∴CF∥DG, ∵AD是⊙O的直径, ∴∠ACD=90°, ∴∠ACD+∠BAC=180°, ∴AB∥CD,

∴四边形DCFG是平行四边形; (2)解:由CD=AB,

3

设CD=3x,AB=8x, ∴CD=FG=3x, ∵∠AOF=∠COD, ∴AF=CD=3x,

∴BG=8x﹣3x﹣3x=2x, ∵GE∥CF, ∴,

∵BE=4, ∴AC=CE=6, ∴BC=6+4=10, ∴AB==8=8x, ∴x=1,

在Rt△ACF中,AF=3,AC=6,∴CF=

=3

, 即⊙O的直径长为3

4

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

冲刺中考《圆》压轴真题训练 1.(2019?遂宁)如图,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=,BC=6. (1)求证:∠COD=∠BAC; (2)求⊙O的半径OC; (3)求证:CF是⊙O的切线. 解:(1)∵AG是⊙O的切线,AD是⊙O的直径, ∴∠GAF=90°, ∵AG∥BC, ∴AE⊥BC, ∴CE=BE, ∴∠BAC=2∠EAC, ∵∠COE=2∠CAE, ∴∠COD=∠BAC; (2)∵∠COD=∠BAC, 1 ∴cos∠BAC=cos∠COE=∴设OE=x,OC=3x, ∵BC=6, ∴CE=3, ∵CE⊥AD, ∴OE2

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com