当前位置:首页 > 2014高三第一轮复习求数列通项公式
2014高三第一轮复习求数列通项公式
一、公式法
1.已知数列{an}中,a1??2,2an?1=2an+3,则an? . 2.数列{an}中,a1?2,a2?1,
211??,(n?N*,n?2),则an? . anan?1an?13.在数列{an}中,a1?4,a2?10,若{log3(an?1)}为等差数列,则an? . 4. 等比数列?an?的各项均为正数,a1?2,Sn为其前n项和,若5S1,S3,3S2成等差数列,
则an? .
5.已知在数列{an}中,a1?1,anan?1?3,则an=_________.
n二、迭加法
(an?1?an?f(n)型:an?a1?(a2?a1)?(a3?a2)???(an?1?an?2)?(an?an?1))
,a1?3,则an? . 6.已知数列?an?满足an?1?an?2?3?1n7. 数列{an}的首项为3,{bn}为等差数列且bn?an?1?an.若b3??2,b10?12,则
an? .
三、迭乘法(an?1?f(n)an型,公式:an?a1?8. 已知数列?an?中,a1?aaa2a3????n?1?n ) a1a2an?2an?12,an?n(an?1?an).则an=_________. 3(,则2),an?a1?2a?2a3??(an?1n)?19.已知数列{an}满足a1?13?n?an? .
四、构造新数列法
10.已知数列{an}中,a1?3,an?1?3an?2,则an? . 11.已知数列{an}中,a1?3,an?1?3an?2?3 ,则an=_________. 12.在数列?an?中,a1?2,an?1??an??n?1n?(2??)2n(n?N?),其中??0,则
an=________.
13.已知数列{an}中,a1?2,an?1?an?2an,则an=_________.
211314.已知数列{an}中a1?,an?2?(n?2,n?N*),bn?.
an?1an?15(1)求证:数列{bn}是等差数列;(2)求数列{an}和{bn}的通项公式.
15.已知数列{an}满足a1?4,an?1?16.已知数列{an}满足a1?an,则an? .
2an?11,当n?(2n?N?)时有an?an?1?an?1?an,则3an? .
17.已知函数f(x)?x,数列?an?满足a1?1,an?1?f(an),则an? . x?318. 在数列?an?中, a1?2,a2?4,且an?1?3an?2an?1?n?2?.
???令bn?an?1?an,证明:{bn}是等比数列;(Ⅱ)求?an}的通项公式.
19.已知数列?an}满足, a1=1’a2?2,an+2=an?an?1,n?N*.则an? . 2(n?1)?S1五、利用an??求通项。(已知Sn的表达式,或Sn与an的关系式.)
S?S(n?2)n?1?n20.已知数列{an}的前n项和为Sn?2?3,则an? .
21.已知a1?2,a2?8,Sn?1?4Sn?1?5Snn?2,则an? . 22.已知Sn是数列{an}的前n项和,且a1?1,nan?1?2Sn.则an? . 23.数列{an}满足Sn?1?n??1an,则an? . 22六、观察猜想证明
24.数列?an?满足:an?1?an?nan?1,且a1?2,则an=_________. 25.已知数列{an}中,a1?3,a2?6,an?2?an?1?an,则a2014?_______. 七、特征根法
例26.已知数列{an}满足a1?2,an?an?1?2(n?2),求数列{an}的通项an.
2an?1?1解:其特征方程为x?x?2,化简得2x2?2?0,解得x1?1,x2??1,令
2x?1an?1?1a?1 ?c?nan?1?1an?1?an?1?a1?11411 由a1?2,得a2?,可得c??,公比为?的?为首项,?数列??是以
a1?13533?an?1?an?11?1?3n?(?1)n?????,?an?n等比数列,?. an?13?3?3?(?1)n27.已知数列{an}满足性质:对于an?1?n?1an?4,且a1?3,则an=_________.
2an?3练习:
1.若数列{an}的相邻两项an,an?1是关于x的方程x?2x?bn?0(n?N)的两根,且
2n?a1?1.
(1)求证: 数列?an?
2.各项为正数的数列?an?满足an2?4Sn?2an?1(n?N*),其中Sn为?an?前n项和.
(1)求a1,a2的值; (2)求数列?an?的通项公式
3.已知a2、a5是方程x2?12x?27?0的两根,数列?an?是递增的等差数列,数列?bn?的前n项和为Sn,且Sn?1???1n?(2)求数列{an}和?bn?的通项公式. ?2?是等比数列;
3?1.求数列?an?,?bn?的通项公式; bn(n?N?)
22an?114.已知数列{an}满足:a1?1,a2?,且an?2?.
an?an?12(Ⅰ)求证:数列{an}为等差数列;(Ⅱ)求数列{an}的通项公式. an?15. 已知数列{an}满足a1?2,an?1?式.
a?12,设bn?n,求数列{an}和{bn}的通项公an?1an?26.已知数列{an}满足:a1?3,an?1an?2an?1?3an?2,n?N?,记bn?{an}和{bn}的通项公式.
an?2.求数列an?17.已知曲线Cn:x?2nx?y?0(n?1,2,?).从点P(?1,0)向曲线Cn引斜率为
22kn(kn?0)的切线ln,切点为Pn(xn,yn).求数列{xn}与{yn}的通项公式.
求数列通项公式的常用方法参考答案
?1?n23n?72?3,n为奇数nn2n1. ;2. ;3.3?1;4. 2 ; 5.?n ;6.3?n?1;7. n?9n?11;
2n?32,n为偶数?8.
2nn?1nnn?1 ;9. n! ;10. 2?3?1;11. (?2n?5)?3;12. (n?1)???2;13. 3n?12n?5742132?1 ;14.(2)an?,bn?n?;15. ;16. ;17. n;
2n?728n?73?1n?2n18. (Ⅱ) an?2; 19. [5+(-)25.?3 ;
1312n?2??1,n=12;21. 22n?1;22.n ; 23. n ;24.n?1 ;];20. ?n?13?2,n?225?(?1)n?4?5n27. . 练习答案:
2?5n?25?(?1)n1.解:(1) an,an?1是关于x的方程x?2x?bn?0(n?N*)的两根,
2n?an?an?1?2n?? .
aa?bn?nn?11n?11?2??(an??2n), 331n21故数列{an??2}是首项为a1??,公比为?1的等比数列 .
3331n11nn?1n(2)由(1)得an??2??(?1), 即an?[2?(?1)].
3331?bn?anan?1?[2n?(?1)n][2n?1?(?1)n?1]
9由an?an?1?2,得an?1?n2. a1?1,a2?3;an?2n?1.
3.⑴解:x2?12x?27?0得x1?3, x2?9,因为?an?是递增,所以a2?3,a5?9,
共分享92篇相关文档