µ±Ç°Î»ÖãºÊ×Ò³ > £¨ÍêÕûword°æ£©¸ßµÈÊýѧ³£Óù«Ê½´óÈ«£¬ÍƼöÎĵµ
¸ßÊý³£Óù«Ê½
ƽ·½Á¢·½£º
(1)a2?b2?(a?b)(a?b)¡¡¡¡¡¡(2)a2?2ab?b2?(a?b)2¡¡¡¡¡¡(3)a2?2ab?b2?(a?b)2(4)a3?b3?(a?b)(a2?ab?b2)¡¡¡¡¡¡¡¡(5)a3?b3?(a?b)(a2?ab?b2)¡¡¡¡¡¡(6)a3?3a2b?3ab2?b3?(a?b)3¡¡¡¡¡¡¡¡(7)a3?3a2b?3ab2?b3?(a?b)3¡¡¡¡¡¡(8)a2?b2?c2?2ab?2bc?2ca?(a?b?c)2¡¡¡¡¡¡(9)an?bn?(a?b)(an?1?an?2b?L?abn?2?bn?1),(n?2)
Èý½Çº¯Êý¹«Ê½´óÈ«
Á½½ÇºÍ¹«Ê½
sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB
tanA?tanBtan(A+B) =
1-tanAtanBtanA?tanBtan(A-B) =
1?tanAtanBcotAcotB-1cot(A+B) =
cotB?cotAcotAcotB?1cot(A-B) =
cotB?cotA
±¶½Ç¹«Ê½
2tanAtan2A =
1?tan2ASin2A=2SinA?CosA Cos2A =
Cos2A-Sin2A=2Cos2A-1=1-2sin2A
Èý±¶½Ç¹«Ê½
sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA
??tan3a = tana¡¤tan(+a)¡¤tan(-a)
33
°ë½Ç¹«Ê½ sin(
1?cosAA)=
221?cosAA)=
221?cosAA)=
1?cosA21?cosAA)=
1?cosA2cos(
tan(
cot(tan(
A1?cosAsinA)==
sinA1?cosA2ºÍ²î»¯»ý
a?ba?bsina+sinb=2sincos
22a?ba?bsina-sinb=2cossin
22a?ba?bcosa+cosb = 2coscos
22a?ba?bcosa-cosb = -2sinsin
22
tana+tanb=
sin(a?b)
cosacosb
»ý»¯ºÍ²î
1[cos(a+b)-cos(a-b)] 21cosacosb = [cos(a+b)+cos(a-b)]
21sinacosb = [sin(a+b)+sin(a-b)]
21cosasinb = [sin(a+b)-sin(a-b)]
2
ÓÕµ¼¹«Ê½
sin(-a) = -sina cos(-a) = cosa ÍòÄܹ«Ê½
a2tan2 sina=
a1?(tan)22a1?(tan)22 cosa=
a1?(tan)22a2tan2 tana=
a1?(tan)22
sinasinb = -
ÆäËü¹«Ê½
?-a) = cosa 2?cos(-a) = sina
2?sin(+a) = cosa
2?cos(+a) = -sina
2sin(¦Ð-a) = sina cos(¦Ð-a) = -cosa sin(¦Ð+a) = -sina cos(¦Ð+a) = -cosa
sinatgA=tanA =
cosasin(
ÆäËû·ÇÖØµãÈý½Çº¯Êý
1csc(a) =
sina1sec(a) =
cosa
Ë«Çúº¯Êý
ea-e-asinh(a)=
2ea?e-acosh(a)=
2tg h(a)=
sinh(a)cosh(a)a?sina+b?cosa=(a2?b2)¡Ásin(a+c) [ÆäÖÐtanc=a?sin(a)-b?cos(a) = 1+sin(a) =(sin
b] aa] b(a2?b2)¡Ácos(a-c) [ÆäÖÐtan(c)=
aa+cos)2 22aa1- sin(a) = (sin-cos)2
22
¹«Ê½Ò»£º cos£¨-¦Á£©= cos¦Á Éè¦ÁΪÈÎÒâ½Ç£¬ÖÕ±ßÏàͬµÄ½ÇµÄͬһtan£¨-¦Á£©= -tan¦Á Èý½Çº¯ÊýµÄÖµÏàµÈ£º cot£¨-¦Á£©= -cot¦Á sin£¨2k¦Ð£«¦Á£©= sin¦Á cos£¨2k¦Ð£«¦Á£©= cos¦Á ¹«Ê½ËÄ£º tan£¨2k¦Ð£«¦Á£©= tan¦Á ÀûÓù«Ê½¶þºÍ¹«Ê½Èý¿ÉÒԵõ½¦Ð-¦ÁÓë¦Ácot£¨2k¦Ð£«¦Á£©= cot¦Á µÄÈý½Çº¯ÊýÖµÖ®¼äµÄ¹ØÏµ£º sin£¨¦Ð-¦Á£©= sin¦Á ¹«Ê½¶þ£º cos£¨¦Ð-¦Á£©= -cos¦Á Éè¦ÁΪÈÎÒâ½Ç£¬¦Ð+¦ÁµÄÈý½Çº¯ÊýÖµÓë¦Átan£¨¦Ð-¦Á£©= -tan¦Á µÄÈý½Çº¯ÊýÖµÖ®¼äµÄ¹ØÏµ£º cot£¨¦Ð-¦Á£©= -cot¦Á sin£¨¦Ð£«¦Á£©= -sin¦Á cos£¨¦Ð£«¦Á£©= -cos¦Á ¹«Ê½Î壺 tan£¨¦Ð£«¦Á£©= tan¦Á ÀûÓù«Ê½-ºÍ¹«Ê½Èý¿ÉÒԵõ½2¦Ð-¦ÁÓë¦Ácot£¨¦Ð£«¦Á£©= cot¦Á µÄÈý½Çº¯ÊýÖµÖ®¼äµÄ¹ØÏµ£º sin£¨2¦Ð-¦Á£©= -sin¦Á ¹«Ê½Èý£º cos£¨2¦Ð-¦Á£©= cos¦Á ÈÎÒâ½Ç¦ÁÓë -¦ÁµÄÈý½Çº¯ÊýÖµÖ®¼äµÄ¹Øtan£¨2¦Ð-¦Á£©= -tan¦Á ϵ£º cot£¨2¦Ð-¦Á£©= -cot¦Á sin£¨-¦Á£©= -sin¦Á
¹«Ê½Áù£º ?3?¡À¦Á¼°¡À¦ÁÓë¦ÁµÄÈý½Çº¯ÊýÖµÖ®¼äµÄ¹ØÏµ£º
22?3?sin£¨+¦Á£©= cos¦Á tan£¨+¦Á£©= -cot¦Á
22?3?cos£¨+¦Á£©= -sin¦Á cot£¨+¦Á£©= -tan¦Á
22?3?tan£¨+¦Á£©= -cot¦Á sin£¨-¦Á£©= -cos¦Á
22?3?cot£¨+¦Á£©= -tan¦Á cos£¨-¦Á£©= -sin¦Á
22?3?sin£¨-¦Á£©= cos¦Á tan£¨-¦Á£©= cot¦Á
22?3?cos£¨-¦Á£©= sin¦Á cot£¨-¦Á£©= tan¦Á
22?(ÒÔÉÏk¡ÊZ) tan£¨-¦Á£©= cot¦Á
2?cot£¨-¦Á£©= tan¦Á
23?sin£¨+¦Á£©= -cos¦Á
23?cos£¨+¦Á£©= sin¦Á
2
Õâ¸öÎïÀí³£Óù«Ê½ÎÒ·ÑÁ˰ëÌìµÄ¾¢²ÅÊä½øÀ´,Ï£Íû¶Ô´ó¼ÒÓÐÓà A?sin(¦Øt+¦È)+ B?sin(¦Øt+¦Õ) =A2?B2?2ABcos(???)¡Ásin
ÌØÊâ½ÇµÄÈý½Çº¯ÊýÖµ£º ?t?arcsin[(Asin??Bsin?)A?B?2ABcos(???)22
? f(?) 0 ?6 ?4 ?3 ?2 ¦Ð 3?2 2¦Ð (0?) 0 1 0 ²»´æÔÚ (30?) (45?) (60?) 3/2 (90?) 1 0 ²»´æÔÚ 0 (180?) 0 -1 0 ²»´æÔÚ (270?) -1 0 ²»´æÔÚ 0 (360?) 0 1 0 ²»´æÔÚ sin? cos? 1/2 3/2 1/3 3 2/2 2/2 1 1 1/2 3 1/3 tan? cot? µÈ¼Û´ú»»£º
(1) sinx¡«x (2) tanx¡«x (3) arcsinx¡«x (4) arctanx¡«x
1x(5) 1?cosx¡«x2 (6) ln(1?x)¡«x (7) e?1¡«x (8)
2(1?x)a?1¡«ax
»ù±¾Çóµ¼¹«Ê½£º
(1) (C)??0¡¡£¬CÊdz£Êý (2) (x?)???x??1 (3) (ax)??axlna (4) (logax)??1 xlna(5) (sinx)??cosx (6) (cosx)???sinx (7) (tanx)??12?secx (8) 2cosx??csc2x
(cotx)???1sin2x(9) (secx)??(secx)tanx (10) (cscx)???(cscx)cotx
¹²·ÖÏí92ƪÏà¹ØÎĵµ