当前位置:首页 > 电动小车最终方案版
电机驱动调速方案的控制目标是实现电动机的正、反转及调速 方案一:电阻网络或数字电位器调整分压
采用电阻网络或数字电位器分压调整电动机的电压。但电动机工作电流很大;分压不仅会降低效率,而且实现很困难。 方案二:采用继电器开关控制
采用继电器控制电动机的开或关,通过开关的切换调整车速。优点是电路简单,缺点是响应时间慢、控制精度低、机械结构易损坏、寿命较短、可靠性低。
方案三: H 型 PWM 电路
采用电子开关组成 H 型 PWM 电路。 H 型电路保证了简单的实现转速和方向的控制;用单片机控制电子开关工作的占空比,精确调整电动机转速。最终选择方案三。 3 、路面探测方案论证
探测路面黑线的原理:光线照射到路面并反射,由于黑线和白线的反射系数不同,可根据接收到的反射光的强弱来判断传感器和黑线相对位置。
方案一:采用可见光发光二极管和光敏二极管
采用普通可见光发光管和光敏管组成的发射-接收电路。其缺点在于易受到环境光源的影响。即便提高发光管亮度也难以抵抗外界光的干扰。 方案二:采用反射式红外发射-接收器
采用反射式红外发射-接收器。直接用直流电压对发射管进行供电,其优点是实现简单,对环境光源的抗干扰能力强,在要求不高时可以使用。
方案三:采用脉冲调制的红外发射-接收器
在方案二的基础上采用脉冲调制发射。由于环境光干扰主要是直流分量,因此如果采用带有特定交流分量的调制信号,则可在接收端采用相应的手段来大幅度减少外界干扰。缺点是实现复杂﹑成本高。
根据本题目中对探测地面的要求,由于传感器可以在车体的下部,发射、接收距地面都很近,外界光对其的干扰都很小。在基本不影响效果的前提下,为了简便起见,我们选用了方案二。 4 、障碍物探测模块 方案一:超声波探测
采用超声波器件。超声波波瓣较宽,一个发生器就可以监视较宽的范围。其优点为抗干扰能力强,不受物体表面颜色的影响。缺点为实现电路复杂,且用通常的测量方法在较近距离上有盲区。
方案二:光电式探测
采用光电式发射、检测模块。由于单个发射器的照射范围不能太小,因此不使用激光管。用波瓣较宽的脉冲调制型红外发射管和接收器。其优点是电路实现简单,抗干扰性较强。
由于题目中已知障碍物外表为白色,有利于红外线的反射。同时从电路实现的难易程度上考虑,我们最终选择了方案一。 5 、寻光定向模块
题目条件是在终点线后放置 200W 白炽灯用以指向,因此采用普通光敏三极管进行检测。 方案一:车转式安装
采用固定方向安装方式。将两个光敏三极管固定在车头的左右两边指向前方,当车头对准光源时,两传感器输出平衡;当车的方向不准时,通过两传感器输出的差别控制车原地转向来寻找光源。 方案二:模拟雷达扫描
用装在车底盘上的步进电机带动圆盘左右扫描,装在圆盘上的光敏传感器通过扫描 ,可以准确定位光源。
我们采用了方案一。
6 、车轮检速及路程计算模块 方案一:磁感应式
采用霍尔元器件(霍尔元器件应用霍尔效应,输出量与磁场的大小有关)并在车轮上安装磁片,利用位置固定的开关型霍尔元器件来检测车轮的转动,通过单位时间内的脉冲数进行车速测量。 方案二:光反射式
采用反射式红外器件。在车轮轮辐面板上均匀画出黑底白线或白底黑线,通过正对线条的反射式红外器件,产生脉冲。通过对脉冲的计数测速。 方案三:光对射式
采用对射式红外传感器。在轮辐面板上均匀刻出孔,在轮子两侧固定相对的红外发射、接收器件。在过孔处接收器可以接收到信号。从而轮子转动时可以产生连续脉冲信号,通过对脉冲的计数进行车速测量。 选择了方二。 7 、供电电源选择 空
8 、方案论证总结
综上所述,本设计方案如图 1 所示。
共分享92篇相关文档