当前位置:首页 > 高中数学常用公式及常用结论
或
1?2f(x)?f2(x)?f(x?a),(f(x)??0,1?),则f(x)的周期T=2a;
1(f(x)?0),则f(x)的周期T=3a;
f(x?a)f(x1)?f(x2)(4)f(x1?x2)?且f(a)?1(f(x1)?f(x2)?1,0?|x1?x2|?2a),则
1?f(x1)f(x2)f(x)的周期T=4a;
(5)f(x)?f(x?a)?f(x?2a)f(x?3a)?f(x?4a)
?f(x)f(x?a)f(x?2a)f(x?3a)f(x?4a),则f(x)的周期T=5a; (6)f(x?a)?f(x)?f(x?a),则f(x)的周期T=6a.
(3)f(x)?1?30.分数指数幂 (1)a(2)amn?1n?mn?am1mn(a?0,m,n?N,且n?1). (a?0,m,n?N,且n?1).
??an31.根式的性质 (1)(na)?a.
(2)当n为奇数时,a?a;
nn?a,a?0当n为偶数时,a?|a|??.
?a,a?0?nn32.有理指数幂的运算性质 (1) a?a?arsrrsrrrsr?s(a?0,r,s?Q).
(2) (a)?a(a?0,r,s?Q).
(3)(ab)?ab(a?0,b?0,r?Q).
p
注: 若a>0,p是一个无理数,则a表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.
33.指数式与对数式的互化式
logaN?b?ab?N(a?0,a?1,N?0).
34.对数的换底公式
logmN (a?0,且a?1,m?0,且m?1, N?0).
logmann推论 logamb?logab(a?0,且a?1,m,n?0,且m?1,n?1, N?0).
mlogaN?35.对数的四则运算法则
若a>0,a≠1,M>0,N>0,则 (1)loga(MN)?logaM?logaN;
M?logaM?logaN; Nn(3)logaM?nlogaM(n?R).
(2) loga236.设函数f(x)?logm(ax?bx?c)(a?0),记??b?4ac.若f(x)的定义域为
2R,则a?0,且??0;若f(x)的值域为R,则a?0,且??0.对于a?0的情形,需要
单独检验.
5
37. 对数换底不等式及其推广
1,则函数y?logax(bx) a11 (1)当a?b时,在(0,)和(,??)上y?logax(bx)为增函数.
aa11(为减函数)和上y?log. , (2)当a?b时,在(0,)(,??)axbxaa 若a?0,b?0,x?0,x?推论:设n?m?1,p?0,a?0,且a?1,则 (1)logm?p(n?p)?logmn. (2)logamlogan?loga2
m?n. 238. 平均增长率的问题
如果原来产值的基础数为N,平均增长率为p,则对于时间x的总产值y,有
y?N(1?p)x.
39.数列的同项公式与前n项的和的关系
n?1?s1,an??( 数列{an}的前n项的和为sn?a1?a2???an).
s?s,n?2?nn?140.等差数列的通项公式
an?a1?(n?1)d?dn?a1?d(n?N*);
其前n项和公式为
n(a1?an)n(n?1)?na1?d 22d1?n2?(a1?d)n. 22sn?41.等比数列的通项公式
an?a1qn?1?a1n?q(n?N*); q其前n项的和公式为
?a1(1?qn),q?1?sn??1?q
?na,q?1?1?a1?anq,q?1?或sn??1?q.
?na,q?1?142.等比差数列?an?:an?1?qan?d,a1?b(q?0)的通项公式为
?b?(n?1)d,q?1?an??bqn?(d?b)qn?1?d;
,q?1?q?1?其前n项和公式为
6
?nb?n(n?1)d,(q?1)?sn??. d1?qnd(b?)?n,(q?1)?1?qq?11?q?43.分期付款(按揭贷款)
ab(1?b)n每次还款x?元(贷款a元,n次还清,每期利率为b). n(1?b)?144.常见三角不等式 (1)若x?(0,(2) 若x?(0,?2),则sinx?x?tanx.
),则1?sinx?cosx?2. 2(3) |sinx|?|cosx|?1.
45.同角三角函数的基本关系式
?sin2??cos2??1,tan?=
sin?,tan??cot??1. cos?46.正弦、余弦的诱导公式(奇变偶不变,符号看象限)
n?n??(?1)2sin?,sin(??)?? n?12?(?1)2cos?,?(n为偶数) (n为奇数) (n为偶数) (n为奇数)
n?)co?s,n??(?12 cos(??)??n?12?(?1)2s?in,?47.和角与差角公式
sin(???)?sin?cos??cos?sin?;
cos(???)?cos?cos??sin?sin?;
tan??tan?. tan(???)?1?tan?tan?sin(???)sin(???)?sin2??sin2?(平方正弦公式); cos(???)cos(???)?cos2??sin2?.
asin??bcos?=a2?b2sin(???)(辅助角?所在象限由点(a,b)的象限决
b定,tan?? ).
a48.二倍角公式
sin2??sin?cos?.
cos2??cos2??sin2??2cos2??1?1?2sin2?.
2tan?. tan2??1?tan2?49. 三倍角公式
sin3??3sin??4sin3??4sin?sin(??)sin(??).
33?? 7
cos3??4cos3??3cos??4cos?cos(??)cos(??)333tan??tan3???tan3???tan?tan(??)tan(??).
1?3tan2?3350.三角函数的周期公式
函数y?sin(?x??),x∈R及函数y?cos(?x??),x∈R(A,ω,?为常数,且A≠0,ω>0)的周期T???.
2??;函数y?tan(?x??),x?k???2,k?Z(A,ω,?为常数,且A
≠0,ω>0)的周期T?51.正弦定理
?. ?abc???2R. sinAsinBsinC52.余弦定理
a2?b2?c2?2bccosA; b2?c2?a2?2cacosB; c2?a2?b2?2abcosC.
53.面积定理
111aha?bhb?chc(ha、hb、hc分别表示a、b、c边上的高). 222111(2)S?absinC?bcsinA?casinB.
222????????2????????21(3)S?OAB?(|OA|?|OB|)?(OA?OB). 2(1)S?54.三角形内角和定理
在△ABC中,有A?B?C???C???(A?B)
?C?A?B?2C?2??2(A?B). ??222k55. 简单的三角方程的通解
sinx?a?x?k??(?1)arcsina(k?Z,|a|?1). cosx?a?x?2k??arccosa(k?Z,|a|?1).
tanx?a?x?k??arctana(k?Z,a?R).
特别地,有
sin??sin????k??(?1)k?(k?Z).
cos??cos????2k???(k?Z).
tan??tan????k???(k?Z).
56.最简单的三角不等式及其解集
sinx?a(|a|?1)?x?(2k??arcsina,2k????arcsina),k?Z.
sinx?a(|a|?1)?x?(2k????arcsina,2k??arcsina),k?Z. cosx?a(|a|?1)?x?(2k??arccosa,2k??arccosa),k?Z.
cosx?a(|a|?1)?x?(2k??arccosa,2k??2??arccosa),k?Z.
tanx?a(a?R)?x?(k??arctana,k???2),k?Z.
8
共分享92篇相关文档