当前位置:首页 > 汽车车牌图像的区域分割与字符提取
一般情况下,当?R=0.299、?G=0.587、?B=0.114时,得到的灰度图像效果最好。
2.2边缘提取
数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域十分重要的基础。边缘是图像的重要特征,图像理解和分析的第一步往往就是边缘检测。目前,边缘检测已成为计算机视觉研究领域最活跃的课题之一,在工程应用中占有十分重要的地位。车牌的一个重要特征就是在该区域存在大量的边缘信息,所以边缘检测对于我们进行车牌识别来说也是相当重要的。
边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,如灰度值的突变、颜色的突变、纹理结构的突变等,同时边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向灰度变化剧烈。由于边缘是图像上灰度变化最剧烈的地方,传统的边缘检测就利用这个特点,通过计算图像中像素的梯度值来确定边缘点。
常用的图像边缘提取算子有Roberts算子、sobel算子、Prewitt算子、Laplacian算子等,它们的模板分别如下:
(1)Roberts梯度算子:
(2)Sobel算子:
(3)Prewitc算子:
(4)Laplacian算子:
3.车牌定位
自然环境下,汽车图像背景复杂,光照不均匀,在自然背景中准确地确定牌照区域是整个图像识别过程中的关键。首先对采集到的图像进行大范围相关搜
4
索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳区域作为牌照区域。将其从图像中分割嘲出来,同时要考虑车牌倾斜问题。算法流程如下:
(1)对二值图像进行区域提取。计算并比较区域特征参数,提取车牌区域。进行闭运算,可使得水平相邻的边缘连接成为连通区域;进行开运算可使得车牌区域与其它背景区域分开,成为独立的连通域。
(2)计算包含所标记区域的最小宽和高。并根据先前知识,提取并显示更接近的车牌二子值图。
(3)通过计算车牌旋转角度解决车牌倾斜问题。由于车牌倾斜导致投影效果峰谷不明显,需车牌矫正处理,采取线性拟合方法,计算出车牌上边或下边图像值为1的点拟合直线与水平X轴的夹角。
4.字符分割
完成牌照区域的定位后,再将牌照区域分割为单个字符,可采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值.并且该位置应满足牌照的字符书写格式、字符、尺寸限制等条件。利用垂直投影法实现复杂环境下汽车图像中的字符分割效果较好。
通过分析计算字符的水平投影和垂直投影,可获得车牌字符高度、字符顶行与尾行、字符宽度、每个字符的中心位置,以方便提取分割字符。然后计算车牌垂直投影,去掉车牌垂直边框,获取车牌及字符平均宽度。最后计算车牌每个字符的中心位置和最大字符宽度,提取分割字符,其算法流程如图3所示。
图3车牌分割的MATLAB算法流程
此处采用的方法为寻找连续有文字的块,若长度大于某阈值,则认为该块有两个字符组成,需要分割。算法如下:
[m,n]=size(d),逐排检查有没有白色像素点,设置1<=j 5 5.字符识别 字符识别方法主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法是首先将分割后的字符二值化,并将其尺寸缩放为字符数据库中模板的大小,然后与所有模板进行匹配,最后选取最佳匹配作为结果。建立数字库对该方法在车牌识别过程中很重要,数字库准确才能保证检测出的数据正确。基于人工神经元网络的算法有两种,一种是先对特征提取待识别字符,然后用所获得的特征训练神经网络分配器;另一种是直接将待处理图像输入网络由网络自动实现特征提取直至识别结果。模板匹配实现简单,当字符较规整时,对字符图像的缺损、污迹干扰适应力强且识别率高。因此,这里将模板匹配作为车牌字符识别的主要方法。 模板匹配是图象识别方法中最具代表性的基本方法之一,它是将从待识别的图象或图象区域f(i,j)中提取的若干特征量与模板T(i,j)相应的特征量逐个进行比较,计算它们之间规格化的互相关量,其中互相关量最大的一个就表示期间相似程度最高,可将图象归于相应的类。也可以计算图象与模板特征量之间的距离,用最小距离法判定所属类。然而,通常情况下用于匹配的图象各自的成像条件存在差异,产生较大的噪声干扰,或图象经预处理和规格化处理后,使得图象的灰度或像素点的位置发生改变。在实际设计模板的时候,是根据各区域形状固有的特点,突出各类似区域之间的差别,并将容易由处理过程引起的噪声和位移等因素都考虑进去,按照一些基于图象不变特性所设计的特征量来构建模板,就可以避免上述问题。 建立自动识别的代码表 读取分割出来的字第一个字符与模板中的汉字模板进行匹配 第二个字符与模板中的字母模板进行匹配 后5个字符与模板中的字母与数字模板进行匹配 待识别字符与模板字符相减,值越小相似度越大,找到最小的一个即为匹配的最好的 识别完成,输出此模板对应值 6 三.课程设计的步骤和结果 此处以车牌1作为示例图像 1. 获取图像 [fn,pn,fi]=uigetfile('*.bmp','选择图片'); Scolor=imread([pn fn]); ???? 2. 图像灰度化 Sgray = rgb2gray(Scolor);%rgb2gray转换成灰度图 原始黑白图像 3. 图像增强 s=strel('disk',13);%strei函数13 Bgray=imopen(Sgray,s);%打开sgray s图像 Egray=imsubtract(Sgray,Bgray);%两幅图相减 增强黑白图像背景图像 4. 边缘提取 7
共分享92篇相关文档