云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > (优辅资源)河南省乡市第一中学高三8月月考数学(理)试题Word版含答案

(优辅资源)河南省乡市第一中学高三8月月考数学(理)试题Word版含答案

  • 62 次阅读
  • 3 次下载
  • 2025/12/3 5:52:12

优质文档

而f(x1)+≥. 依题意有g(x)最小值≤.

22、【答案】解:(Ⅰ)∵圆的极坐标方程为ρ=2cosθ, ∴圆C的直角坐标方程x2+y2﹣2x=0,

把 代入x2+y2﹣2x=0,得t2﹣4tcosα+3=0,

又直线l与圆C交于A,B两点,∴△=16cos2α﹣12>0,

解得: 或

又由α∈[0,π),故α的取值范围 .

(Ⅱ)设方程t2﹣4tcosα+3=0的两个实数根分别为t1 , t2 ,

则由参数t的几何意义可知: ,

又由 ,∴ ,

∴ 的取值范围为 .

【考点】简单曲线的极坐标方程,参数方程化成普通方程 【解析】【分析】(Ⅰ)由圆的极坐标方程,能求出圆C的直角坐标方程,把

代入x2+y2﹣2x=0,得t2﹣4tcosα+3=0,由此利用根的判别式能求出α的取值范围. (Ⅱ)设方程t2﹣4tcosα+3=0的两个实数根分别为t1 , t2 , 则由参数t的几何意义可知:

,由此能求出 的取值范围.

23.【答案】解:(1)令|2x+1|=0,解得x=﹣,令|x﹣2|=0,解得x=2. 当x≥2时,原不

等式化为:2x+1+x﹣2<4,解得x ,此时无解;

当 <x<2时,原不等式化为:2x+1+2﹣x<4,解得x<1,可得 <x<1;

优质文档

优质文档

当 时,原不等式化为:﹣2x﹣1+2﹣x<4,解得x>﹣1,可得﹣1<x≤ .

综上可得:原不等式的解集为{x|﹣1<x<1};(2)令g(x)=f(x)+x,当x≤时,g(x)

=|x﹣a|﹣x﹣1,由a ,

可得g(x)= ,对于?x∈ ,

使得f(x)+x≥3恒成立.只需[g(x)]min≥3,x∈ 作出g(x)的图象,可得:[g(x)]min=g(a)=﹣a﹣1, ∴﹣a﹣1≥3,可得a≤﹣4.

【考点】绝对值不等式的解法

【解析】【分析】(1))令|2x+1|=0,解得x=﹣,令|x﹣2|=0,解得x=2.对x分类讨论即可得.

(2)令g(x)=f(x)+x,当x≤

时,g(x)=|x﹣a|﹣x﹣1,由a

,可得g(x)

= x∈

,对于?x∈

,利用图象,即可得出.

,使得(fx)+x≥3恒成立.只需[g(x)]min≥3,

优质文档

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

优质文档 而f(x1)+≥. 依题意有g(x)最小值≤. 22、【答案】解:(Ⅰ)∵圆的极坐标方程为ρ=2cosθ, ∴圆C的直角坐标方程x2+y2﹣2x=0, 把 代入x2+y2﹣2x=0,得t2﹣4tcosα+3=0, 又直线l与圆C交于A,B两点,∴△=16cos2α﹣12>0, 解得: 或 又由α∈[0,π),故α的取值范围 . (Ⅱ)设方程t2﹣4tcosα+3=0的两个实数根分别为t1 , t2 , 则由参数t的几何意义可知: , 又由 ,∴ , ∴ 的取值范围为 . 【考点】简单曲线的极坐标方程,参数方程化成普通方程 【解

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com