云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 奥赛培训讲义《曲线运动 万有引力》

奥赛培训讲义《曲线运动 万有引力》

  • 62 次阅读
  • 3 次下载
  • 2025/12/3 4:44:29

奥赛培训讲义《曲线运动 万有引力》

(学生活动)v1和v2定量关系若何?是否可以考虑用运动的分解与合成的知识解答?

针对如图6所示的两种典型方案,初步评说——甲图中v2 = v1cosθ,船越靠岸,θ越大,v2越小,和前面的定性结论冲突,必然是错误的。

错误的根源分析:和试验修订本教材中“飞机起飞”的运动分析进行了不恰当地联系。仔细比较这两个运动的差别,并联系“小船渡河”的运动合成等事例,总结出这样的规律——

合运动是显性的、轨迹实在的运动,分运动是隐性的、需要分析而具有人为特征(无唯一性)的运动。

解法一:在图6(乙)中,

当我们挖掘、分析了滑轮绳子端点的运动后,不难得出:船的沿水面运动是v2合运动,端点参与绳子的缩短运动v1和随绳子的转动v转 ,从而肯定乙方案是正确的。

即:v2 = v1 / cosθ 解法二:微元法。从考查位置开始取一个极短过程,将绳的运动和船的运动在图7(甲)中标示出来,AB是绳的初识位置,AC是绳的末位置,在AB上取AD=AC得D点,并连接CD。显然,图中BC是船的位移大小,DB是绳子的缩短长度。由

于过程极短,等腰三角形ACD的顶角∠A→0,则底角∠ACD→90°,△CDB趋于直角三角形。将此三角放大成图7(乙),得出:S2 = S1 / cosθ 。

鉴于过程极短,绳的缩短运动和船的运动都可以认为是匀速的,即:S2 = v2 t ,S1 = v1 t 。

所以:v2 = v1 / cosθ

三、斜抛运动的最大射程

物理情形:不计空气阻力,将小球斜向上抛出,初速度大小恒为v0 ,方向可以选择,试求小球落回原高度的最大水平位移(射程)。

模型分析:斜抛运动的常规分析和平抛运动完全相同。

设初速度方向与水平面夹θ角,建立水平、竖直的x、y轴,将运动学参量沿x、y分解。针对抛出到落回原高度的过程

0 = Sy = v0y t + Sx = v0x t

12(-g)t

2

5

奥赛培训讲义《曲线运动 万有引力》

解以上两式易得:Sx =

v0g2sin2θ

2结论:当抛射角θ= 45°时,最大射程Sxmax =

v0g

(学生活动)若v0 、θ确定,试用两种方法求小球到达的最大高度。

运动学求解——考查竖直分运动即可;能量求解——注意小球在最高点应具备的速度v0x ,然后对抛出到最高点的过程用动能定理或机械能守恒。结论:Hm = 四、物体脱离圆弧的讨论

物理情形:如图8所示,长为L的细绳一端固定,另一端系一小球。当小球在最低点时,给球一个vo = 2gL的水平初速,试求所能到达的最大高度。

模型分析:用自然坐标分析变速圆周运动的典型事例。能量关系的运用,也是对常规知识的复习。

(学生活动)小球能否形成的往复的摆动?小球能否到达圆弧的最高点C ?

通过能量关系和圆周运动动力学知识的复习,得出:小球运动超过B点、但不能到达C点(vC ≥gL),即小球必然在BC之间的某点脱离圆弧。

(学生活动)小球会不会在BC之间的某点脱离圆弧后作自由落体运动?

尽管对于本问题,能量分析是可行的(BC之间不可能出现动能为零的点,则小球脱离圆弧的初速度vD不可能为

零),但用动力学的工具分析,是本模型的重点——

在BC阶段,只要小球还在圆弧上,其受力分析必如图9所示。沿轨迹的切向、法向分别建τ、n坐标,然后将重力G沿τ、n分解为Gτ和Gn分量,T为绳子张力。法向动力学方程为

T + Gn = ΣFn = man = m

v2v0sin2g22? 。

r

由于T≥0 ,Gn>0 ,故v≠0 。(学生活动:若换一个v0值,在AB阶段,v = 0是可能出现的;若将绳子换成轻杆,在BC阶段v = 0也是可能出现的。)

下面先解脱离点的具体位置。设脱离点为D,对应方位角为θ,如图8所示。由于在D点之后绳子就要弯曲,则此时绳子的张力T为零,而此时仍然在作圆周运动,故动力学方程仍满足

Gn = Gsinθ= m

v2r ①

在再针对A→D过程,小球机械能守恒,即(选A所在的平面为参考平面):

6

奥赛培训讲义《曲线运动 万有引力》

122mv0+ 0 = mg ( L + Lsinθ) +

12mv2 ② D23代入v0值解①、②两式得:θ= arcsin ,(同时得到:vD =

23gL)小球脱离D点后将以vD为

初速度作斜向上抛运动。它所能到达的最高点(相对A)可以用两种方法求得。 解法一:运动学途径。

先求小球斜抛的最大高度,hm =

527(vDcos?)2g2 =

vD(1?sin2g22?)

代入θ和vD的值得:hm = L

5027小球相对A的总高度:Hm = L + Lsinθ+ hm = 解法二:能量途径

L

小球在斜抛的最高点仍具有vD的水平分量,即vDsinθ= 能守恒定律(设A所在的平面为参考平面),有

122323gL 。对A→最高点的过程用机械

mv0+ 0 =

212m(vDsin?) + mg Hm 50272容易得到:Hm = L

五、万有引力的计算

物理情形:如图9所示,半径为R的均质球质量为M,球心在O点,现在被内切的挖去了一个半径为R/2的球形空腔(球心在O′)。在O、O′的连线上距离O点为d的地方放有一个很小的、质量为m的物体,试求这两个物体之间的万有引力。 模型分析:无论是“基本条件”还是“拓展条件”,本模型都很难直接符合,因此必须使用一些特殊的处理方法。本模型除了照应万有引力的拓展条件之外,着重介绍“填补法”的应用。

空腔里现在虽然空无一物,但可以看成是两个半径为R/2的球的叠加:一个的质量

为+M/8 ,一个的质量为-M/8 。然后,前者正好填补空腔——和被挖除后剩下的部分构成一个完整的均质球A ;注意后者,虽然是一个比较特殊的物体(质量为负值),但仍然是一个均质的球体,命名为B 。

既然A、B两物均为均质球体,他们各自和右边小物体之间的万有引力,就可以使用“拓展条件”中的定势来计算了。只是有一点需要说明,B物的质量既然负值,它和m之间的万有“引力”在方向上不再表现为吸引,而应为排斥——成了“万有斥力”了。具体过程如下

7

奥赛培训讲义《曲线运动 万有引力》

FAm = G

Mmd2

?M8?m2FBm = G = -G

Mm8(d?R2)2

R??d???2??最后,两物之间的万有引力 F = FAm + FBm = G

Mmd2-G

Mm8(d?R2)2

需要指出的是,在一部分同学的心目中,可能还会存在另一种解题思路,那就是先通过力矩平衡求被挖除物体的重心(仍然要用到“填补法”、负质量物体的重力反向等),它将在O、O′的连线上距离O点左侧R/14处,然后“一步到位”地求被挖除物与m的万有引力

M7(d??mR14F = G

)2然而,这种求法违背了万有引力定律适用的条件,是一种错误的思路。

六、天体运动的计算

物理情形:地球和太阳的质量分别为m和M ,地球绕太阳作椭圆运动,轨道的半长轴为a ,半短轴为b ,如图11所示。试求地球在椭圆顶点A、B、C三点的运动速度,以及轨迹在A、C两点的曲率半径。

模型分析:求解天体运动的本来模式,常常要用到开普勒定律(定量)、机械能守恒(万有引力势能)、椭圆的数学常识等等,相对高考要求有很大的不同。

地球轨道的离心率很小(其值

ca≈0.0167 ,其中c

为半焦距),这是我们常常能将它近似为圆的原因。为了方便说明问题,在图11中,我们将离心率夸大了。

针对地球从A点运动到B点的过程,机械能守恒

12mvA+(-G2Mma?c)=

12mvB+(-G2Mma?c)

比较A、B两点,应用开普勒第二定律,有:vA(a-c)= vB(a + c) 结合椭圆的基本关系:c =

a?a?b a?bb2222解以上三式可得:vA =

GMa , vB =

a?a?bb22GMa

再针对地球从A到C的过程,应用机械能守恒定律,有

12mvA+(-G2Mma?c)=

12mvC+(-G2Mma)

代入vA值可解得:vC =

GMa

8

奥赛培训讲义《曲线运动 万有引力》

为求A、C两点的曲率半径,在A、C两点建自然坐标,然后应用动力学(法向)方程。 在A点,F万 = ΣFn = m an ,设轨迹在A点的曲率半径为ρA ,即:G

Mm(a?c)2= m

vA?A2

代入vA值可解得:ρA =

b2a

在C点,方程复杂一些,须将万有引力在τ、n方向分解,如图12所示。

然后,F

万n

=ΣFn = m an ,即:F万cosθ= m

vC?C2

即:G

Mma2·

ba = m

vC?C2

代入vC值可解得:ρC =

a2b

值得注意的是,如果针对A、C两点用开普勒第二定律,由于C点处的矢径r和瞬时速度vC不垂直,方程不能写作vA(a-c)= vC a 。

正确的做法是:将vC分解出垂直于矢径的分量(分解方式可参看图12,但分解的平行四边形未画出)vC cosθ,再用vA(a-c)=(vC cosθ)a ,化简之后的形式成为 vA(a-c)= vC b

要理解这个关系,有一定的难度,所以建议最好不要对A、C两点用开普勒第二定律

第三讲 典型例题解析

教材范本:龚霞玲主编《奥林匹克物理思维训练教材》,知识出版社,2002年8月第一版。 例题选讲针对“教材”第五、第六章的部分例题和习题。

9

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

奥赛培训讲义《曲线运动 万有引力》 (学生活动)v1和v2定量关系若何?是否可以考虑用运动的分解与合成的知识解答? 针对如图6所示的两种典型方案,初步评说——甲图中v2 = v1cosθ,船越靠岸,θ越大,v2越小,和前面的定性结论冲突,必然是错误的。 错误的根源分析:和试验修订本教材中“飞机起飞”的运动分析进行了不恰当地联系。仔细比较这两个运动的差别,并联系“小船渡河”的运动合成等事例,总结出这样的规律—— 合运动是显性的、轨迹实在的运动,分运动是隐性的、需要分析而具有人为特征(无唯一性)的运动。 解法一:在图6(乙)中,当我们挖掘、分析了滑轮绳子端点的运动后,不难得出:船的沿水面运动是v2合运动,端点参与绳子的缩短运动v1和随绳子的转动v转 ,从而肯定乙方案是正确的。 即:v2 =

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com