当前位置:首页 > E组《有理数的乘方》讨论结果
模块三必选案例<有理数的乘方>讨论结果
聂贵君
冰老师,您好:
由于B组没有人领取活动一案例分析,为了不影响大家的成绩,同时发扬团队精神,我在这里就给总结了.
首先我们小组的每一位学员都对该案例进行了分析,大家都分析很好,就是刘巨华老师1、4问没回答。
现在我将我们小组的汇总讨论结果总结如下:
1、你认为陈老师的教学设计使用了什么教学模式?
答:我们认为陈老师的教学设计使用了以下教学模式: (一) 程序教学的教学模式。
程序教学的基本做法是把教材内容细分成很多的小单元,并按照这些单元的逻辑关系顺序地排列起来,构成由易到难的很多小步子,让学生循序渐进,依次进行学习。在学习过程中,学生要尽量做出正确反应,教师(或教学机器)要在学生每回答一个问题、做出一个反应之后立即反馈,出示正确答案。在教学中陈老师把教学内容分成了由易到难的三个小单元:折纸、乘方的概念、幂的符号规律探究。学生循序渐进,依次进行学习。在每一步陈老师都有问题,学生解答正确后才进入下一环节。
(二) 有意义接受学习教学模式。 陈老师的课堂环节包括了以下几部分:
(1)呈现比较性组织者:比较性组织者用于比较熟悉的学习材料中,目的在于比较新材料与认知结构中相类似的材料,从而增强似是而非的新旧知识之间的可辨性。
在教学之初,教师设计了请大家动手折纸。本课内容的授课对象是刚升入初中不久的学生,仍未脱稚气,折纸对于他们来说应该是很喜欢的游戏。通过这一活动,教师引导学生在探索中学习求知,发现层数和折叠的次数之间的关系,培养其独立钻研、独立学习的能力。
(2)呈现新学习内容:即通过讲解、讨论、录像、作业等形式让学生接触新的学习材料或任务,学习材料的呈现必须逻辑清晰,让
学生能容易地把握各个概念、原理之间的关联性。另外,教师要注意集中和维持学生的注意力,要使学生明确了解学习材料的组织方式,对整个学习过程有明确的方向感。
陈老师通过讲解“我们把这种求几个相同因数的乘积的运算叫做乘方运算,这是继加、减、乘、除之后我们学习的一种新的运算—乘方运算 ” ;陈老师师在计算机上用 Math3.0 演示乘方运算,引导学生展开分析;巩固练习作业的形式让学生接触新的学习材料和任务,学习材料的呈现逻辑清晰,学生就能容易地把握乘方概念。
(3)知识的整合协调:即帮助学生把新信息纳入到自己的认知结构之中。教师可以提醒学生注意每个要点与整体知识结构的关系;向学生提问,以了解他们是否理解了学习内容;鼓励学生提出问题,从而使他们的理解能够超越所呈现的现成信息。
陈老师以提问的形式“层数和折叠的次数之间有什么关系?能解释其中的道理吗?”“你能用新学习的乘方运算表示上面的结果吗??”帮助学生把新信息纳入到自己的认知结构之中。
(4)应用所学的知识来解决有关的问题:有意义接受学习教学模式是典型的以教为主的教学模式。它有助于教师引导学生在有限的时间内掌握系统的知识,且在实施上经济、可行。最后陈老师给学生精选了知识拓展 ( 选作 ) ,让学生应用所学知识,解决实际问题: 1 、某种细胞每过 30 分钟便分裂一次,即由一个变两个 , 问这种细胞一天能由一个分裂成多少个?
2 、某工厂的生产产量预计每年以 7% 的速度增长,则 10 年后该工厂的产量将变为今年的多少倍?
3 、百万富翁与“指数爆炸”:
杰米是百万富翁,一天,他碰到一件奇怪的事。一个叫韦伯的人对他说,我想和你订个合同,我将在整整一个月中每天给你 10 万元,而你第一天只需给我 1 分钱,以后你每天给我的钱是前一天的两倍。杰米说,真的?你说话算数?
在合同生效的一个月里,杰米破产了。请同学们分析一下,杰米和韦伯之间到底发生了什么?
4 、面中的数学:一根 50 ㎝的面条均匀拉长到原来的 2 倍后对折 , 再均匀拉长到原来的 2 倍后对折 , 如此反复操作 10 次,原来的面条该有多长,该有多细?
(三)发现式的教学模式:让学生通过自己的亲身实践操作——折纸,发现每次折叠的层数以倍数的形式增加,由此认识新的运算——乘方,通过喜闻乐见的活动,引导学生发现、探究新知识。让学生在动手的过程中自己发现错误,改正错误,这样得到的知识,比老师反复地强调100遍的效果还要好。在这一环节中,让学生自己动手,并在动手的过程中观察纸的厚度是成倍的增加,从而得出如果折n次纸的层数是 n个2相乘。紧扣了课题。创设了问题情境,在猜想中设置悬念,让学生带着疑问去做、去思考,激发了学生学习数学的兴趣。
(四)探究性教学模式:这节课通过折纸活动创设情境引入了乘方的概念,使学生感受到生活中处处有数学,这样既帮助学生掌握了乘方的概念又激发了他们学习数学的兴趣。让学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识和技能、思想与方法的同时又获得了广泛的数学活动的经验,为导入新课作好了铺垫。在问题的设计方面,注重了让学生经历观察、实验、猜想、验证等数学活动,发展了学生的逻辑推理能力和初步的演绎推理能力。
(五)计算机辅助教学模式: 陈老师在这节课中使用多媒体来讲解新知识、逻辑清晰,让学生能容易地把握各个概念、原理之间的关联性。另外,教师能有效利用多媒体吸引学生的注意力和维持学生的注意力,使学生明确学习目的,对整个学习过程有明确的方向感。并帮助学生把新信息纳入到自己的认知结构中,引导学生在有限的时间内掌握有理数的乘方这一知识点。
2、你觉得陈老师的教学设计中体现了哪些教学策略?体现在哪里?
答:我觉得陈老师的教学设计中体现了以下教学策略: (1)、情境教学策略。
在教学之初,教师设计了:“请大家动手折一折,一张纸折一次后沿折痕折叠,变成几层?如果折两次,折三次呢?层数和折叠的次数之间有什么关系?能解释其中的道理吗?”( 学生动手折叠,提问层数和折叠的次数的关系,并板书折叠的次数和对应的折叠层数 , 归纳出每一次折叠的层数都是上一次折叠层数的 2 倍)。
陈老师提供了资源型教学情境的创设,引出新知识。教师引导学生在探索中学习求知,培养其独立钻研、独立学习的能力。该情境与教学内容密切相关,充分调动了学生的学习积极性。
陈老师还提供了问题型教学情境的创设,把学生引入一种与问题有关的情境的过程,使学生的注意、记忆、思维凝聚在一起,以达到智力活动的最佳状态。
教师充分利用直观形象的白纸材料,创设问题情境,激励学生主动参与,达到发展学生,实现教学的目的。
(2)、先行组织者教学策略。
陈老师在让学生学习“有理数的乘方”之前先让学生回答“折纸问题”,那么“折纸问题”概念就是学生学习“有理数的乘方”概念的陈述性先行组织者。
其中陈述性组织者体现在学生创设情境,列出算式后,教师讲述:我们把这种求几个相同因数的乘积的运算叫做乘方运算,这是继加、减、乘、除之后我们学习的一种新的运算—乘方运算。
比较性组织者体现在:当底数是正数或零,不管多少次方都是幂都是正数,这是不成问题的 , 困难在于底数是负数的情况。让我们猜想这其中有什么规律?让学生通过比较,发现负数的幂的正负规律。
例如在教学有理数乘方的概念时,由小学已经学过的边长为 a 的正方形的面积为 a · a, 简记作 a2, 读作 a 的平方(或二次方);棱长为 a 的正方体的体积为 a · a · a ,简记作 a3 , 读作 a 的立方(或三次方),进入到更一般的情况,帮助学生用先前学过的材料去解释、整合和联系当前学习任务中的材料。
(3)、自主学习教学策略。
例如:陈老师让学生猜想这其中有什么规律:
练习 3 :说出下列负数的幂的符号 (1)
; (2)
; ( 3 )
; ( 4 )
从以上的运算中,你发现负数的幂的正负有什么规律?你能解释这其中的理由吗? 从以上的运算中,你发现负数的幂的正负有什么规律?你能解释这其中的理由吗?
让学生自己发现问题,寻找规律,这属于自主学习教学策略。在课堂上学生积极参与,可以说课堂在小高潮不断的情况下达到一个大的高潮,此时学生学习的主动性得到充分的体现。学生是多么想参与啊!谁说数学课堂是枯燥无味的,这样的组织形式不是让学生在乐趣中增加数学知识吗?
(4)、探究式教学策略。
探究式教学模式的体现:教师在上课一开始首先让学生动手折纸,通过实际操作和教师的板书,不但调动了学生学习的积极性。还让学生理解了乘方运算的概念。
共分享92篇相关文档