云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 弹性力学及其有限元法

弹性力学及其有限元法

  • 62 次阅读
  • 3 次下载
  • 2025/12/9 21:17:40

在坐标旋转后的新坐标系中,记为

所以,在研究相对位移分量的转换关系时,首先要推导一阶微分算子式(1-34)变换时的转换关系。根据复合函数的求导规则,有

?,??x?y在坐标按

由公式(1-34)的逆表示可以求得

?x?x'?l1,?y?x'?m1,?x?y'?l2,?y?y'?m2

该式指明,一阶线性微分算子列阵的坐标转换规律与坐标分量本身的转换规律相同。

即: ( 1-56) 或

该式就是相对位移向量的转轴公式,与应力张量转换公式(1-44)形式相同,所以相对位移分量也具有张量性质,称为相对位移张量,在平面问题里,它是个二维二阶非对称张量。

七、应变张量的转轴公式,一点的应变状态, 应变张量,主应变,应变主方向,应变不变量

任何一个非对称的二级张量总可以分解为对称和反对称两部分,相对位移张量可以分解

(1-57)

等式右边第一个矩阵的元素是由应变分量组成的,表示微元体的变形;第二个矩阵的元素表示微元体的刚性转动。记:

式中,?z称为绕z轴的刚性转动分量。利用式(1-58),式(1-57)可写为 或

搜索更多关于: 弹性力学及其有限元法 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

在坐标旋转后的新坐标系中,记为 所以,在研究相对位移分量的转换关系时,首先要推导一阶微分算子式(1-34)变换时的转换关系。根据复合函数的求导规则,有 ?,??x?y在坐标按 由公式(1-34)的逆表示可以求得?x?x'?l1,?y?x'?m1,?x?y'?l2,?y?y'?m2 该式指明,一阶线性微分算子列阵的坐标转换规律与坐标分量本身的转换规律相同。 即: ( 1-56)

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com