当前位置:首页 > 高中物理高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题(含答案)
高中物理高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题
(含答案)
一、带电粒子在无边界匀强磁场中运动1专项训练
1.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的电势为
L(??o),内圆弧面CD的电势为?,足够长的收集板MN平行边界ACDB,ACDB与2MN板的距离为L.假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB的粒子再次返回.
(1)求粒子到达O点时速度的大小;
(2)如图2所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB圆弧面的粒子经O点进入磁场后最多有能打到MN板上,求所加磁感应强度的大小;
(3)如图3所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个垂直MN的匀强电场,电场强度的方向如图所示,大小E?23?4L,若从AB圆弧面收集到的某粒子经
O点进入电场后到达收集板MN离O点最远,求该粒子到达O点的速度的方向和它在PQ与MN间运动的时间. 【答案】(1)v?【解析】 【分析】 【详解】
试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:qU?0?1m?2m2q?;(2)B?;(3)???600 ;2L
L2qq?m12mv 2U?2?????v?2q? m(2)从AB圆弧面收集到的粒子有
2能打到MN板上,则上端刚好能打到MN上的粒子与3MN相切,则入射的方向与OA之间的夹角是60?,在磁场中运动的轨迹如图甲,轨迹圆心角??600.
根据几何关系,粒子圆周运动的半径:R?2L
v2由洛伦兹力提供向心力得:qBv?m
R联合解得:B?1m?
L2q(3)如图粒子在电场中运动的轨迹与MN相切时,切点到O点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.
L?1qE2t 2mt?vx?2mL2m?2L qEq?Eq2qELq? t??mm2m若速度与x轴方向的夹角为?角
cos??1vxcos?????600 v2
2.在磁感应强度为B的匀强磁场中,一个静止的放射性原子核发生了一次α衰变.放射出α粒子(2He )在与磁场垂直的平面内做圆周运动,其轨道半径为R.以m、q分别表示α粒子的质量和电荷量.
(1)放射性原子核用 AZX 表示,新核的元素符号用Y表示,写出该α衰变的核反应方程.
(2)α粒子的圆周运动可以等效成一个环形电流,求圆周运动的周期和环形电流大小. (3)设该衰变过程释放的核能都转为为α粒子和新核的动能,新核的质量为M,求衰变过程的质量亏损△m.
【答案】(1)放射性原子核用 AZX 表示,新核的元素符号用Y表示,则该α衰变的核
A反应方程为ZX?A?4Z?24Y?2H ;(2)α粒子的圆周运动可以等效成一个环形电流,则圆
42?mBq2周运动的周期为 ,环形电流大小为 ;(3)设该衰变过程释放的核能都转
Bq2?m为为α粒子和新核的动能,新核的质量为M,则衰变过程的质量亏损△m为损
11(BqR)2 . (?)2mM2c【解析】
(1)根据核反应中质量数与电荷数守恒可知,该α衰变的核反应方程为
AZX?A?4Z?24Y?2He
(2)设α粒子在磁场中做圆周运动的速度大小为v,由洛伦兹力提供向心力有
v2qvB?m
R根据圆周运动的参量关系有T?2πR v得α粒子在磁场中运动的周期T?2πm qBqq2B根据电流强度定义式,可得环形电流大小为I??
T2πmqBRv2(3)由qvB?m,得v?
Rm设衰变后新核Y的速度大小为v′,核反应前后系统动量守恒,有Mv′–mv=0 可得v??mvqBR? MM2根据爱因斯坦质能方程和能量守恒定律有?mc?11Mv?2?mv2 22(M?m)(qBR)2解得?m? 22mMc说明:若利用M?A?4m解答,亦可. 4【名师点睛】(1)无论哪种核反应方程,都必须遵循质量数、电荷数守恒.
(2)α衰变的生成物是两种带电荷量不同的“带电粒子”,反应前后系统动量守恒,因此反应后的两产物向相反方向运动,在匀强磁场中,受洛伦兹力作用将各自做匀速圆周运动,且两轨迹圆相外切,应用洛伦兹力计算公式和向心力公式即可求解运动周期,根据电流强度的定义式可求解电流大小.
(3)核反应中释放的核能应利用爱因斯坦质能方程求解,在结合动量守恒定律与能量守恒定律即可解得质量亏损.
3.如图甲所示,在直角坐标系中的0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有以点(2L,0)为圆心、半径为L的圆形区域,与x轴的交点分别为M、N,在xOy平面内,从电离室产生的质量为m、带电荷量为e的电子以几乎为零的初速度从P点飘入电势差为U的加速电场中,加速后经过右侧极板上的小孔Q点沿x轴正方向进入匀强电场,已知O、
L,飞出电场后从M点进入圆形区域,不考虑电子所受的重力。 2(1)求0≤x≤L区域内电场强度E的大小和电子从M点进入圆形区域时的速度vM;
Q两点之间的距离为
(2)若圆形区域内加一个垂直于纸面向外的匀强磁场,使电子穿出圆形区域时速度方向垂直于x轴,求所加磁场磁感应强度B的大小和电子在圆形区域内运动的时间t; (3)若在电子从M点进入磁场区域时,取t=0,在圆形区域内加如图乙所示变化的磁场(以垂直于纸面向外为正方向),最后电子从N点飞出,速度方向与进入圆形磁场时方向相同,请写出磁场变化周期T满足的关系表达式。
【答案】(1)E?2UeU,vM?2,设vM的方向与x轴的夹角为θ,θ=45°;(2)Lm3?mL?RmvM2mv3?LmT?3T,t?4;()的表达式为(n=B???2n2emUeRLevM8eU1,2,3,…) 【解析】
共分享92篇相关文档