当前位置:首页 > 2021届高考数学一轮复习阶段测评卷(五)导数及其应用
解析:由f(x)?x?lnx得f?(x)?1?11,则f??x0??1?1?k,得x0?, xk?1x011?11kln?0,即k?2,所以切线l的方程为由f?,得??ln??1??k?1k?1k?1?k?1?k?1y?2x?1,
令x?0,得到y??1,令y?0,得到x?B. 5.答案:A
1111,所以所求三角形面积为??|?1|?,故选2224解析:由题可知f?(x)?ex?2ax,f?(1)?e?2a?e?2,所以a?1,故f(1)?e?1,所以函数f(x)的图象在(1,f(1))处的切线方程为y?(e?1)?(e?2)(x?1),即 (e?2)x?y?1?0.故选
A. 6.答案:B
4a44解析:由y?alnx?得y???2,因为曲线y?alnx?(x?1)在每一点处的切线的斜率
xxxxa44都小于1,所以??2?1在(1,??)上恒成立,即a?x?在(1,??)上恒成立.因为当x?1时,
xxx444当且仅当x?,即x?2时等号成立,所以实数a的取值范围是(??,4),x?2x??4,
xxx故选B. 7.答案:A
解析:因为x?0,f?x??f??x???xln??x??1,f??1??1,f'?x???ln??x??1,f'??1???1,所以曲线y?f?x?在x??1处的切线方程为y??x.故选A. 8.答案:C
版权所有?正确教育 侵权必纠!
?1??1?解析:因为f??x??lnx?1,所以f?x?在?0,?上递减,在?,???上递增,故①错误;
?e??e?1)上递减,在(1,??)上递增,故设g(x)?f(x)?x?x?lnx?x,所以g?(x)?lnx,g(x)在(0,②错误; 设h?x??f?x1?f?x2?f?x??,故③正确; ?lnx,所以lnx2?lnx1,所以
xx2x12?lnx2?2x1x2lnx1?lnx2?2x1x2lnx1?2x2?f?x1?,故因为x1?f?x1??x2?f?x2??x12?lnx1?x2④正确.综上所述,故选C. 9.答案:D
解析:设直线y?ax?b与曲线f(x)?ex,g(x)?lnx?2分别切于点x1,ex1,?x2,lnx2?2?,又因为f?(x)?ex,g?(x)???11,所以y?ex?ex?x?x1?,y??lnx2?2???x?x2?,即xx211?x11?x1?0?e?xy?ex1x??1?x1?ex1,y?1x?lnx2?1,所以?,解得?,故a?b?1,2x?1x2x?2??1?x?e1?lnx?112?所以a?b?2.故选D. 10.答案:D
3?xx3x?x解析:易知函数f(x)的定义域为R,因为f(?x)?2(?x)?e?e??2x?e?e??f(x),
??所以函数f(x)?2x3?ex?e?x为奇函数.因为f?(x)?6x2?ex?e?x?0,所以函数f(x)在
1??1??1?,所以(??,??)上单调递增.由f(x?a)?f???0,得f(x?a)?f???f???x?1??x?1??1?x?x?a?x?11,即a?x?,又x?(?1,1)时,(1?x)?(0,2),所以1?x1?x111?(1?x)??12(1?x)??1?1,当且仅当x?0时,取“=”,所以a1,1?x1?x1?x版权所有?正确教育 侵权必纠!
即a?(??,1],故选D.
2?11.答案:??,???
?27?解析:依题意f'(x)?2mx?1111?2?0,故2m?2?3,令g(t)?t2?t3,t?(0,1),故xxxx2?2??2?g'(t)?2t?3t2,令g'(t)?0,得t?,所以当t??0,?时,g'(t)?0,当t??,1?时,
3?3??3??2?4,即m?2,即实数的取值范围为?2?. mg'(t)?0,2m?g???,????2727?3?27??12.答案:?1,0?或??1,?4?
解析:因为f?x??x?x?2在点P0处的切线与直线y?4x?1平行,所以切线斜率k?4.
3函数f?x?的导数f??x??3x?1,由f??x??3x?1?4,得x2?1,解得x?1或x??1,
22所以f?1??0,f??1???4,即切点坐标为?1,0?或??1,?4?. 故答案为:?1,0?或??1,?4?. 13.答案:1 解析:f'(x)?aaa,设切点为?m,n?,则切线斜率为,由题意可知?1,即m?a,故xmmn?alna?a?1.令g(a)?alna?a?1(a?0),则g'(a)?1?lna?1?lna,所以当a?(0,1)时,
g'(a)?0,g(a)单调递减;当a?(1,??)时,g'(a)?0,g(a)单调递增.所以g(x)min?g(1)?0,
即alna?a?1有唯一实根1,所以a?1. 14.答案:(e,2e)
1
解析:f?(x)?ax2?ax?xex?ex?(x?1)(ax?ex).因为f(x)在(,2)上有3个不同的极值点,
2
版权所有?正确教育 侵权必纠!
11
所以f?(x)?0在(,2)上有3个不同的实根,所以ax?ex?0在(,2)上有2个不同的实根
22
exex1ex(x?1)(且不等于1).由ax?e?0,得a?.令g(x)?(?x?2),则g?(x)?,显然
x2x2x11e2函数g(x)在(,1)单调递减,在(1,2)单调递增.又g()?2e,g(1)?e,g(2)?,因为
2221g()?g(2),所以e?a?2e. 2x15.答案:(1)依题意,f(x)?ex?x2,故f'(x)?ex?2x. f'(0)?1,而f(0)?1.
故所求切线方程为y?1?x,即x?y?1?0.
x2x(2)由me?x?x4?me得mex(x?1)?x2?4x.
???x2?4x?即问题转化为当x?0时,m??x?.
e(x?1)??max?(x?2)x2?2x?2x2?4x令g(x)?x. ,x?0,则g'(x)?(x?1)2exe(x?1)由g'(x)?0及x?0,得x?3?1.
当x?(0,3?1)时,g'(x)?0,g(x)单调递增; 当x?(3?1,??)时,g'(x)?0,g(x)单调递减. 所以当x?3?1时,g(x)max?g(3?1)?2e1?3??.
所以m?2e1?3.即实数m的取值范围为?2e1?3,??. ??版权所有?正确教育 侵权必纠!
共分享92篇相关文档