当前位置:首页 > 【人教版】七年级上册数学:第三章《一元一次方程》全章备课
[教学过程]
一、问题导入
一元一次方程有这样的特点:一边是含有未知数的项,一边是常数项。这样的方程我们可以用合并同类项来解,那么像3x+7=32-2x这样的方程怎么解呢?
二、移项的概念
问题:把一些图书分给某班学生阅读,如果每人3本,则剩余20本;如果每人4本,则还缺25本,这个班有多少学生?
设这个班有x人,那么这批书有多少本?还可以怎么表示? 这批书共有(3x+20)本,还可表示为(4x-25)本。 因为3x+20与4x-25都表示这批书,所以
3x+20=4x-25
由上节课的学习,你能猜想怎么解这个方程吗? 把未知项移一到边,把常数项移到一边。 怎样才能做到这一点呢?
由等式的性质,把等式两边同时减去4x,加上20。即
-4x-20 -4x-20 3x+20 = 4x-25 ① 3x-4x=-20-25 ②
比较①、②,方程中的项4x与20发生了怎样的变化?
4x从右边移到了左边,并且改变了符号,20从左边移到了右边,并且改变了符号。 像这样,把等式一边的某项变号后移到另一边,叫做移项。 把②合并同类项,得
-x=-45 ∴x=45
所以这个班有45名学生。
注意:表示同一个量的两个不同的式子相等,这是一个基本的等量关系。 思考:上面解方程中“移项”有什么作用?
通过移项,使含未知数的项在等号的一边,常数项在另一边,从而把方程转化为我们熟悉的类型,这就是化归思想的运用。
解方程经常要合并与移项。前面提到的古老代数书中的“对消”和“还原”,指的就是“合并”与“移项”。
三、例题
现在我们来解前面提到的方程。 例1 3x+7=32-2x 解:移项,得
3x+2x=32- 7 合并同类项,得
5x=25 ∴x=5
注意:移项要变号。
四、课堂练习
1、下面的移项对不对?如果不对,错在哪里?应当怎样改正? (1)从3x+6=0得到3x=6; (2从)2x=x-1得到2x= 1-x
(3)从2+x-3=2x+1得到2-3-1=2x-x。 2、课本91面(1)~(2);
3、甲粮仓存粮1000吨,乙粮仓存粮798吨,现从甲粮仓运一部分到乙粮仓使甲乙两个粮仓的粮食数量相等,那么应从甲粮仓运出多少吨粮食?
五、课堂小结
1、什么叫做移项?移项的依据是什么? 2、移项法解一元一次方程要注意什么? 移项要注意变号。
3、我们知道了哪些基本的等量关系? 总量=部分量的和;
表示同一个量的两个不同的式子相等. 作业:
课本2;3(3)、(4);8;9。 六、板书设计:
3.2.2解一元一次方程——移项(2)
一、问题导入 二、探索移项解一元一次方程 三、例题 四、练习
七、课后反思:
3.2.3一元一次方程的应用(一)
[教学目标]1、掌握用一元一次方程解决实际问题的基本思想;2、进一步经历用方程解决实际问题的过程,体会运用方程解决实际问题的一般方法。
[重点难点]运用一元一次方程解决简单的实际问题是重点;寻找等量关系是难点。
教学方法〕指导探究,合作交流
〔教学资源〕小黑板
[教学过程] 一、目标导入
前面我们通过简单的实际问题研究了一元一次方程的解法,今天我们就来运用一元一次方程解决简
单的实际问题。
二、例题
例1 有一列数,按一定规律排列成1,-3,9,-27,81,-243,…,其中某三个相邻数的和是-1701,这三个数各是多少?
分析:从符号与绝对值两方面观察,这列数有什么规律?
符号正负相间;后者的绝对值是前者绝对值的3倍。即后一个数是前一个数的-3倍。 如果设其中一个数为x,那么后面与它相邻的两个数你能用x表示出来吗? 后面两数分别是-3x,9x。 问题中的相等关系是什么? 三个相邻数的和=-1701。
由此可得方程 x-3 x+9x=-1701 解之,得x=-243。
所以这三个数是-243,729,-218。
注意:本题中有三个未知量,由它们之间的关系,我们可以用一个字母来表示,从而列出一元一次方程。这一点要注意学习。
例2 根据下面的两种移动电话计费方式表,考虑下列问题。
月租费 本地的通话费
(1)一个月内在本地通话200分和350分,按方式一需交费多少元?按方式二呢? (2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗? 分析:(1)按方式一在本地通话200分钟需要交费多少元?350分钟呢? 通话200分钟需要交费:30+200×0.3=90元; 通话350分钟需要交费:30+350×0.3=135元.
按方式二在本地通话200分钟需要交费多少元?350分钟呢? 通话200分钟需要交费:200×0.4=80元; 通话350分钟需要交费:350×0.4=140元.
(2)设累计通话t分钟,那么按方式一要收费多少元?按方式二收费多少元? 按方式一要收费(30+0.3t)元;按方式二要收费0.4t元. 问题中的等量关系是什么? 方式一的收费=方式二的收费. 由此可列方程 30+0.3t=0.4t 解之,得 t =300
所以,当一个月内通话300分钟时,两种计费方式的收费一样多. 引申:你知道怎样选择计费方式更省钱吗? 当t=400时, 30+0.3t=30+0.3×400=150元; 0.4t=0.4×400=160元.
方式一 30元/月 0.30元/分 方式二 0元 0.4元/分 当时间大于300分钟时,方式一更省钱.
三、一元一次方程解实际问题的基本过程
将实际问题转化为数学问题即建立数学模型,通过解决数学问题来解决实际问题。
四、课堂练习
学校办了储蓄所,开学时,李英存了200元,王建存了140元,以后李英每月存20元,王建每月存35元,经过几个月,李英、王建的存款数相等?
五、课堂小结
本节课我们研究了通过列一元一次方程,把实际问题抽象成数学问题即建立数学模型,再通过解一元一次方程即解决数学问题来解决实际问题的具体方法,这是解决实际问题的一般思想方法。
作业:
课本94面6、7、10。
六、板书设计:
3.2.3一元一次方程的应用(一)
一、问题导入 二、探索一元一次方程解实际问题的基本过程 三、例题 四、练习
七、课后反思:
3.3.1解一元一次方程-去括号(1)
[教学目标]1、掌握含有括号的一元一次方程的解法;2、经历运用方程解决实际问题的过程,进一步体会方程模型的作用。
[重点难点]含有括号的一元一次方程的解法是重点;括号前面是负号时去括号是难点。
〔教学方法〕指导探究,合作交流
〔教学资源〕小黑板
[教学过程] 一、导入新课
前面我们已经学会了运用移项、合并同类项来解一元一次方程,但当问题中的数量关系较复杂时,列出的方程也会较复杂,解方程的步骤也相应更多些,如下面的问题。
二、探索去括号解一元一次方程
问题 某加工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电
共分享92篇相关文档