当前位置:首页 > 2017年重庆市中考数学试卷(a卷)(解析版)
九年级下数学
【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图. 【分析】(1)求出总的作为篇数,即可得出九年级参赛作文篇数对应的圆心角的度数;求出八年级的作为篇数,补全条形统计图即可:
(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.用画树状图法,即可得出答案. 【解答】解:(1)20÷20%=100, 九年级参赛作文篇数对应的圆心角=360°×故答案为:126; 100﹣20﹣35=45,
补全条形统计图如图所示:
(2)假设4篇荣获特等奖的作文分别为A、B、C、D, 其中A代表七年级获奖的特等奖作文. 画树状图法:
共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种, ∴P(七年级特等奖作文被选登在校刊上)=
=. =126°;
21.计算:
(1)x(x﹣2y)﹣(x+y)2 (2)(
+a﹣2)÷
.
九年级下数学
【考点】6C:分式的混合运算;4A:单项式乘多项式;4C:完全平方公式. 【分析】(1)先去括号,再合并同类项;
(2)先将括号里的进行通分,再将除法化为乘法,分解因式后进行约分. 【解答】解:(1)x(x﹣2y)﹣(x+y)2, =x2﹣2xy﹣x2﹣2xy﹣y2, =﹣4xy﹣y2; (2)(=[==
22.如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=2(1)求该反比例函数和一次函数的解析式; (2)连接MC,求四边形MBOC的面积.
,点A的纵坐标为4.
. +
, +a﹣2)÷
]
. ,
【考点】G8:反比例函数与一次函数的交点问题.
【分析】(1)根据题意可以求得点B的坐标,从而可以求得反比例函数的解析式,进而求得点A的坐标,从而可以求得一次函数的解析式;
(2)根据(1)中的函数解析式可以求得点C,点M、点B、点O的坐标,从而
九年级下数学
可以求得四边形MBOC的面积. 【解答】解:(1)由题意可得, BM=OM,OB=2∴BM=OM=2,
∴点B的坐标为(﹣2,﹣2), 设反比例函数的解析式为y=, 则﹣2=
,得k=4,
,
∴反比例函数的解析式为y=, ∵点A的纵坐标是4, ∴4=,得x=1,
∴点A的坐标为(1,4),
∵一次函数y=mx+n(m≠0)的图象过点A(1,4)、点B(﹣2,﹣2), ∴
,得
,
即一次函数的解析式为y=2x+2;
(2)∵y=2x+2与y轴交与点C, ∴点C的坐标为(0,2),
∵点B(﹣2,﹣2),点M(﹣2,0),点O(0,0), ∴OM=2,OC=2,MB=2, ∴四边形MBOC的面积是:
23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.
(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?
(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销
=
=4.
九年级下数学
售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同,求m的值. 【考点】AD:一元二次方程的应用;C9:一元一次不等式的应用.
【分析】(1)利用枇杷的产量不超过樱桃产量的7倍,表示出两种水果的质量,进而得出不等式求出答案;
(2)根据果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同得出等式,进而得出答案. 【解答】解:(1)设该果农今年收获樱桃x千克, 根据题意得:400﹣x≤7x, 解得:x≥50,
答:该果农今年收获樱桃至少50千克;
(2)由题意可得:
100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20, 令m%=y,原方程可化为:3000(1﹣y)+4000(1+2y)(1﹣y)=7000, 整理可得:8y2﹣y=0 解得:y1=0,y2=0.125 ∴m1=0(舍去),m2=12.5 ∴m2=12.5,
答:m的值为12.5.
24.在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.
(1)如图1,若AB=3
,BC=5,求AC的长;
(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.
共分享92篇相关文档