当前位置:首页 > 2020高考物理二轮复习 万有引力与天体运动专题复习教案
C.飞船在此圆轨道上运动的角度速度大于同步卫星运动的角速度
D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度
解析:飞船点火变轨,前后的机械能不守恒,所以A不正确。飞船在圆轨道上时万有引力来提供向心力,航天员出舱前后都处于失重状态,B正确。飞船在此圆轨道上运动的周期90分钟小于同步卫星运动的周期24小时,根据T?可知,飞
?船在此圆轨道上运动的角度速度大于同步卫星运动的角速度,C正确。飞船变轨前通过椭圆轨道远地点时只有万有引力来提供加速度,变轨后沿圆轨道运动也是只有万有引力来提供加速度,所以相等,D不正确。答案为BC。 五、天体运动中的星系问题
天体运动中的星系问题主要有“双星”系与“多星”系。“双星”系是两颗星相距较近,它们绕着连线上的共同“中心”以相同的周期做匀速圆周运动,它们之间的万有引力提供提供做圆周运动的向心力。分析“双星”问题时,一是要确定双星运动的中心,依据卫星做圆周运动的轨道平面,求出轨道半径;二是求出卫星做圆周运动的向心力,同时要注意双星运动的特点,即双星的运动周期相等,向心力大小相等。“多星”系有指“三星”或“四星”等几种情况,其特点是星系中某个卫星在其他星球的引力共同作用下绕中心作圆周运动,同一系统中各天体间的距离不变,各星受到的向心力不一定相等,但其运动周期一定相同。在星系问题中要注意区分两个半径,即由万有引力规律求向心力时的引力半径与卫星绕中心天体做圆周运动的轨道半径。
例题:(10全国卷1)如右图,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速周运动,星球A和B两者中心之间距离为L。已知A、B的中心和O三点始终共线,A和B分别在O的两侧。引力常数为G。
1、求两星球做圆周运动的周期。
2、在地月系统中,若忽略其它星球的影响,可以将月球和地球
看成上述星球A和B,月球绕其轨道中心运行为的周期记为T1。但在近似处理问题
2?时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期T2。已知地球和月球的质量分别为5.98×1024kg 和 7.35 ×1022kg 。求T2与T1两者平方之比。(结果保留3位小数)
解析:⑴A和B绕O做匀速圆周运动,它们之间的万有引力提供向心力,则A和B的向心力相等。且A和B和O始终共线,说明A和B有相同的角速度和周期。因此有
mML,r?L m?Mm?MGMm2?M对A根据牛顿第二定律和万有引力定律得2?m()2L
TM?mLm?2r?M?2R,r?R?L,连立解得R?L3化简得 T?2?
G(M?m)L3⑵将地月看成双星,由⑴得T1?2?
G(M?m)将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得
GMm2?2?m()L
TL2L3化简得 T2?2?
GMT22m?M5.98?1024?7.35?1022所以两种周期的平方比值为()???1.01 24T1M5.98?10例题2:(06广东物理卷)宇宙中存在一些离其它恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其它星体对它们的引力作用。已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行。设每个星体的质量均为m。 (1)试求第一种形式下,星体运动的线速度和周期。
(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少?
解析:(1)第一种形式下,以某个运动星体为研究对象,由万有引力定律和牛
顿第二定律,得:
m2v2m2 F1=G2 F2=G F1+F2=m 2RR(2R)F1 F2 R 运动星体的线速度:v?5Gm 4R 周期为T,则有:T?2?RR ?4?Rv5Gm (2)第二种形式星体之间的距离为r,则三个星体作圆周运动的半径为R/为
R/=
r2
cos30?由于星体作圆周运动所需的向心力靠两个星体的万有引力的合力提供,由万有引力定律和牛顿第二定律,得:
Gm2 F合=22cos30°
rF2 R/ F1 F合 r 4? F向=m2R/
T2m22?2r2G2cos30°=m() ol2cos30T所以星体之间的距离为:r?R3六、卫星运动中的超失重问题
12 5卫星的运动经常涉及卫星的发射、运行和回收三个过程,这三个过程中由于重力在不同的阶段起着不同的作用,卫星或其内部的物体会发生不同程度的超失重现象.卫星通过火箭发射升空过程中向上加速,出现超重现象;进入轨道运行后,万有引力全部用于提供向心力,出现完全失重现象;卫星在回收进入地面,减速下降,出现超重现象,在超失重现象中卫星所受重力不变。
例题1:关于“神舟七号”飞船的运动,下列说法中正确的是( )
A.点火后飞船开始做直线运动时,如果认为火箭所受的空气阻力不随速度变化,同时认为推力F(向后喷气获得)不变,则火箭做匀加速直线运动 B.入轨后,飞船内的航天员处于平衡状态
C.入轨后,飞船内的航天员仍受到地球的引力用,但该引力小于航天员在地面时受到的地球对他的引力
D.返回地面将要着陆时,返回舱会开启反推火箭,这个阶段航天员处于失重状态 解析:火箭上升过程中,离地越来越高,万有引力减小.根据牛顿第二定律F-f=ma,加速度将改变,因此不是匀加速.入轨后,航天员与飞船一起绕地球做圆周运动,所以不是平衡状态而是完全失重状态.返回时,减速下降,超重.所以正确答案为C。.
例题2:(06上海理综)一艘宇宙飞船在预定轨道上做匀速圆周运动,在该飞船的密封舱内,下列实验能够进行的是
解析:飞船在预定轨道上做匀速圆周运动,飞船内的一切物体都处于完全失重状态,与重力有关的现象现象都消失,故正确选项为C。
点评:卫星处于完全失重状态时与重力有关的现象现象都消失,卫星或卫星上的物体所受地球引力全部作为环绕地球运动的向心力,因而不会产生与其他物体挤压、拉伸等形变效果。因此,卫星所携仪器凡工作原理与重力作用效果有关的,在卫星上均无法使用,其相关物理实验也不能完成,如天平称物体的质量,用弹簧秤测物体的重量,用打点计时器验证机械能守恒定律,用水银气压计测飞船上密闭仓内的气体压强等。
共分享92篇相关文档