µ±Ç°Î»ÖãºÊ×Ò³ > ¸ßÖÐпαêÊýѧѡÐÞ(2-1)ÍÖÔ²Á·Ï°Ìâ
ÍÖÔ²¼°Æä±ê×¼·½³Ì
x2y2??1µÄ½¹µã×ø±êΪ 1£®ÍÖÔ²
1625 £¨A£©(0, ¡À3) £¨B£©(¡À3, 0) £¨C£©(0, ¡À5) £¨D£©(¡À4, 0)
x2y2??1ÖУ¬ÏÂÁÐa, b, cÈ«²¿ÕýÈ·µÄÒ»ÏîÊÇ 2£®ÔÚ·½³Ì
10064 £¨A£©a=100, b=64, c=36 £¨B£©a=10, b=6, c=8 £¨C£©a=10, b=8, c=6 £¨D£©a=100, c=64, b=36 3£®ÒÑÖªa=4, b=1£¬½¹µãÔÚxÖáÉϵÄÍÖÔ²·½³ÌÊÇ
x2y2x2y22222?y?1 £¨B£©x??1 £¨C£©?y?1 £¨D£©x??1 £¨A£©4416164£®ÒÑÖª½¹µã×ø±êΪ(0, £4), (0, 4)£¬ÇÒa=6µÄÍÖÔ²·½³ÌÊÇ
x2y2x2y2x2y2x2y2??1 £¨B£©??1 £¨C£©??1 £¨D£©??1 £¨A£©
3620203636161636x2y2??1ÉÏÒ»µãPµ½½¹µãF1µÄ¾àÀëµÈÓÚ6£¬ÔòµãPµ½ÁíÒ»¸ö½¹µãF2µÄ¾àÀëÊÇ 5£®ÈôÍÖÔ²
10036 £¨A£©4 £¨B£©194 £¨C£©94 £¨D£©14
6£®ÒÑÖªF1, F2ÊǶ¨µã£¬| F1 F2|=8, ¶¯µãMÂú×ã|M F1|+|M F2|=8£¬ÔòµãMµÄ¹ì¼£ÊÇ £¨A£©ÍÖÔ² £¨B£©Ö±Ïß £¨C£©Ô² £¨D£©Ïß¶Î 7£®Èôy2£lga¡¤x2=
1£a±íʾ½¹µãÔÚxÖáÉϵÄÍÖÔ²£¬ÔòaµÄȡֵ·¶Î§ÊÇ . 38£®µ±a+b=10, c=25ʱµÄÍÖÔ²µÄ±ê×¼·½³ÌÊÇ .
9£®ÒÑÖªÒ»¸öÔ²µÄÔ²ÐÄÎª×ø±êԵ㣬°ë¾¶Îª2£¬´ÓÕâ¸öÔ²ÉÏÈÎÒâÒ»µãPÏòxÖá×÷´¹Ïß¶ÎPP¡¯£¬ÔòÏß¶ÎPP¡¯µÄÖеãMµÄ¹ì¼£·½³ÌΪ .
10£®¾¹ýµãM(3, £2), N(£23, 1)µÄÍÖÔ²µÄ±ê×¼·½³ÌÊÇ . 11£®ÍÖÔ²µÄÁ½½¹µãΪF1(£4, 0), F2(4, 0)£¬µãPÔÚÍÖÔ²ÉÏ£¬ÒÑÖª¡÷PF1F2µÄÃæ»ýµÄ×î´óֵΪ12£¬Çó´ËÍÖÔ²µÄ·½³Ì¡£
1
Ìá¸ß¾í
1£®¹ýµã(3, £2)ÇÒÓëÍÖÔ²4x+9y=36ÓÐÏàͬ½¹µãµÄÍÖÔ²µÄ·½³ÌÊÇ
2
2
x2y2x2y2x2y2x2y2?1 ??1 £¨B£©??1 £¨C£©??1 £¨D£©? £¨A£©
2510151051010152£®ÈôÍÖÔ²a2x2£
a2y=1µÄÒ»¸ö½¹µãÊÇ(£2, 0)£¬Ôòa= 2 £¨A£©1?3?1?31?5?1?5 £¨B£© £¨C£© £¨D£© 44443£®Èô¡÷ABC¶¥µãB, CµÄ×ø±ê·Ö±ðΪ(£4, 0), (4, 0)£¬AC, AB±ßÉϵÄÖÐÏß³¤Ö®ºÍΪ30£¬Ôò¡÷ABC
µÄÖØÐÄGµÄ¹ì¼£·½³ÌΪ
x2y2x2y2??1(y?0) £¨B£©??1(y?0) £¨A£©
1003610084x2y2x2y2??1(x?0) £¨D£©??1(x?0) £¨C£©
1003610084x2y2??1ÉÏÒ»µã£¬ÒÔµãPÒÔ¼°½¹µãF1, F2Ϊ¶¥µãµÄÈý½ÇÐεÄÃæ»ýΪ1£¬ÔòµãP4£®µãPΪÍÖÔ²54µÄ×ø±êÊÇ £¨A£©(¡À15151515, 1) £¨B£©(, ¡À1) £¨C£©(, 1) £¨D£©(¡À, ¡À1) 2222x2?(y?3)2=10Ϊ²»º¬¸ùʽµÄÐÎʽÊÇ
225£®»¯¼ò·½³Ìx?(y?3)?x2y2x2y2x2y2x2y2??1 £¨B£©??1 £¨C£©??1 £¨D£©??1 £¨A£©
25162591625925x2y2??1µÄ½¹µã×ø±êÊÇ 6£®ÍÖÔ²
m?2m?5 £¨A£©(¡À7, 0) £¨B£©(0, ¡À7) £¨C£©(¡À7,0) £¨D£©(0, ¡À7)
7£®¹ýÍÖÔ²4x2+2y2=1µÄÒ»¸ö½¹µãF1µÄÏÒABÓëÁíÒ»¸ö½¹µãF2Χ³ÉµÄÈý½ÇÐΡ÷ABF2µÄÖܳ¤ÊÇ .
x2y2??1ÉϵÄÒ»µã£¬8£®PΪÍÖÔ²F1ºÍF2ÊÇÆä½¹µã£¬Èô¡ÏF1PF2=60¡ã£¬Ôò¡÷F1PF2µÄÃæ»ýΪ . 10064x2y29£®ÍÖÔ²2?2?1(a>b>0)µÄ°ë½¹¾àΪc£¬ÈôÖ±Ïßy=2xÓëÍÖÔ²µÄÒ»¸ö½»µãµÄºá×ø±êΪc£¬ÔòÍÖ
abÔ²µÄÀëÐÄÂÊΪ .
2
×ÛºÏÁ·Ï°¾í
1£®·½³ÌAx+By=C±íʾÍÖÔ²µÄÌõ¼þÊÇ
£¨A£©A, BͬºÅÇÒA¡ÙB £¨B£©A, BͬºÅÇÒCÓëÒìºÅ £¨C£©A, B, CͬºÅÇÒA¡ÙB £¨D£©²»¿ÉÄܱíʾÍÖÔ²
2
2
x2y2??1ÖУ¬F1, F2·Ö±ðΪËüµÄÁ½¸ö½¹µã£¬ÔòÏÂÁÐ˵·¨ÕýÈ·µÄÓÐ 2£®ÒÑÖªÍÖÔ²·½³ÌΪ
499 ¢Ù½¹µãÔÚxÖáÉÏ£¬Æä×ø±êΪ(¡À7, 0)£»¢Ú ÈôÍÖÔ²ÉÏÓÐÒ»µãPµ½F1µÄ¾àÀëΪ10£¬ÔòPµ½F2µÄ¾àÀëΪ4£»¢Û½¹µãÔÚyÖáÉÏ£¬Æä×ø±êΪ(0, ¡À210)£»¢Ü a=49, b=9, c=40£¬ £¨A£©0¸ö £¨B£©1¸ö £¨C£©2¸ö £¨D£©3¸ö
3£®Èç¹ûÍÖÔ²µÄ½¹¾à¡¢¶ÌÖ᳤¡¢³¤Ö᳤³ÉµÈ²îÊýÁУ¬ÔòÆäÀëÐÄÂÊΪ £¨A£©
31 £¨B£©
35392 £¨C£© £¨D£©
4104£®ÈôµãPµ½Á½¶¨µãF1(£2, 0), F2(2, 0)µÄ¾àÀëÖ®ºÍΪ4£¬ÔòµãPµÄ¹ì¼£ÊÇ
£¨A£©ÍÖÔ² £¨B£©Ö±Ïß £¨C£©Ïß¶Î £¨D£©Á½µã
x2y2??1£¬ÈôÆä½¹µãÔÚxÖáÉÏ£¬ÔòkµÄȡֵ·¶Î§ÊÇ 5£®ÉèÍÖÔ²µÄ±ê×¼·½³ÌΪ
k?35?k £¨A£©k>3 £¨B£©3 x2y26£®ÈôABΪ¹ýÍÖÔ²2?2?1ÖÐÐĵÄÏÒ£¬F(c, 0)ΪÍÖÔ²µÄÓÒ½¹µã£¬Ôò¡÷AFBÃæ»ýµÄ×î´óÖµÊÇ ab £¨A£©b2 £¨B£©bc £¨C£©ab £¨D£©ac x2y2??1ÉÏÒ»µã£¬7£®ÒÑÖªA(4, 2.4)ΪÍÖÔ²ÔòµãAµ½¸ÃÍÖÔ²µÄ×ó½¹µãµÄ¾àÀëÊÇ______________. 25168£®Èô·½³Ìx2cos¦Á£y2sin¦Á+2=0±íʾһ¸öÍÖÔ²£¬ÔòÔ²(x+cos¦Á)2+(y+sin¦Á)2=1µÄÔ²ÐÄÔÚµÚ _________ÏóÏÞ¡£ x2y2??1µÄÁ½¸ö½¹µãΪF1£¬F2, µãPÔÚÍÖÔ²ÉÏ£¬ÈôÏß¶ÎPF1µÄÖеãÔÚyÖáÉÏ£¬Ôò|PF1|9£®ÍÖÔ² 123ÊÇ|PF2|µÄ ±¶¡£ 10£®Ïß¶Î|AB|=4£¬|PA|+|PB|=6, MÊÇABµÄÖе㣬µ±µãPÔÚÍ¬Ò»Æ½ÃæÄÚÔ˶¯Ê±£¬PM³¤¶ÈµÄ×î´óÖµ¡¢ ×îСֵ·Ö±ðΪ . 11£®ÉèÔ²(x+1)2+y2=25µÄÔ²ÐÄΪC£¬A(1, 0)ÊÇÔ²ÄÚÒ»¶¨µã£¬QΪԲÖÜÉÏÈÎÒâÒ»µã£¬AQµÄ´¹Ö±Æ½·Ö ÏßÓëCQµÄÁ¬ÏߵĽ»µãΪM£¬ÔòµãMµÄ¹ì¼£·½³ÌΪ . 12£®Çó¹ýµãP(3, 0)ÇÒÓëÔ²x2+6x+y2£91=0ÏàÄÚÇеĶ¯Ô²Ô²ÐĵĹ켣·½³Ì¡£ 13£®ÔÚÃæ»ýΪ1µÄ¡÷PMNÖУ¬tan¡ÏPMN=µã£¬ÇÒ¹ýµãPµÄÍÖÔ²·½³Ì¡£ 3 1, tan¡ÏMNP=£2, Êʵ±½¨Á¢×ø±êϵ£¬ÇóÒÔM, NΪ½¹2ÍÖÔ²µÄ¼òµ¥¼¸ºÎÐÔÖÊ »ù´¡¾í 1£®Éèa, b, c·Ö±ð±íʾͬһÍÖÔ²µÄ³¤°ëÖ᳤¡¢¶Ì°ëÖ᳤¡¢°ë½¹¾à£¬Ôòa, b, cµÄ´óС¹ØÏµÊÇ £¨A£©a>b>c>0 £¨B£©a>c>b>0 £¨C£©a>c>0, a>b>0 £¨D£©c>a>0, c>b>0 2£®ÍÖÔ²µÄ¶Ô³ÆÖáÎª×ø±êÖᣬÈô³¤¡¢¶ÌÖáÖ®ºÍΪ18£¬½¹¾àΪ6£¬ÄÇôÍÖÔ²µÄ·½³ÌΪ x2y2x2y2x2y2x2y2x2y2?1 £¨C£©??1»ò??1 £¨B£©??1 £¨D£©??1 £¨A£©?2516251691616251625x2y2??1ÉÏÒ»µã£¬Pµ½Ò»Ìõ×¼ÏߵľàÀëΪPµ½ÏàÓ¦½¹µãµÄ¾àÀëÖ®±ÈΪ 3£®ÒÑÖªPΪÍÖÔ² 916 £¨A£© 451 £¨B£© £¨C£©5447 £¨D£© 477 4£®ÍÖÔ²µÄÁ½¸ö½¹µãÈýµÈ·ÖËüµÄ×¼Ïß¼äµÄ¾àÀ룬ÔòÍÖÔ²µÄÀëÐÄÂÊΪ £¨A£© 133 £¨B£© £¨C£© 3236 £¨D£© 166 x2y25£®ÔÚÍÖÔ²2?2?1ÉÏÈ¡Èýµã£¬Æäºá×ø±êÂú×ãx1+x3=2x2£¬Èýµã˳´ÎÓëijһ½¹µãÁ¬½ÓµÄÏ߶γ¤ abÊÇr1, r2, r3£¬ÔòÓÐ £¨A£©r1, r2, r3³ÉµÈ²îÊýÁÐ £¨B£©r1, r2, r3³ÉµÈ±ÈÊýÁÐ £¨C£© 111111,,³ÉµÈ²îÊýÁÐ £¨D£©,,³ÉµÈ±ÈÊýÁÐ r1r2r3r1r2r3x2y2??1µÄ×¼Ïß·½³ÌÊÇ 6£®ÍÖÔ² 925 £¨A£©x=¡À 25161625 £¨B£©y=¡À £¨C£©x=¡À £¨D£©y=¡À 55447£®¾¹ýµãP(£3, 0), Q(0, £2)µÄÍÖÔ²µÄ±ê×¼·½³ÌÊÇ . x2y2??1£¬¸ü½Ó½üÓÚÔ²µÄÒ»¸öÊÇ . 8£®¶ÔÓÚÍÖÔ²C1: 9x+y=36ÓëÍÖÔ²C2: 16122 2 x2y29£®ÍÖÔ²2?2?1ÉϵĵãP(x0, y0)µ½×ó½¹µãµÄ¾àÀëÊÇr= . ab10£®ÒÑÖª¶¨µãA(£2, È¡µÃ×îСֵ¡£ 4 x2y2?1µÄÓÒ½¹µã£¬ÔÚÍÖÔ²ÉÏÇóÒ»µãM£¬Ê¹|AM|+2|MF|3)£¬FÊÇÍÖÔ²?1612
¹²·ÖÏí92ƪÏà¹ØÎĵµ